A370657 Numbers k such that A226199(k) = 7^k + k is prime.
34, 48, 8578, 18960
Offset: 1
Programs
-
PARI
is(n) = ispseudoprime(7^n+n)
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
is(n) = ispseudoprime(7^n+n)
[8^n+n: n in [0..30]];
I:=[1, 9, 66]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];
Table[8^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 7 x^2) / ((8 x - 1) (x - 1)^2), {x, 0, 30}], x] LinearRecurrence[{10,-17,8},{1,9,66},30] (* Harvey P. Dale, Aug 11 2015 *)
a(n)=8^n+n \\ Charles R Greathouse IV, Oct 07 2015
[9^n+n: n in [0..30]];
I:=[1, 10, 83]; [n le 3 select I[n] else 11*Self(n-1)-19*Self(n-2)+9*Self(n-3): n in [1..30]];
Table[9^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 8 x^2) / ((9 x - 1) (x - 1)^2), {x, 0, 30}], x] LinearRecurrence[{11,-19,9},{1,10,83},20] (* Harvey P. Dale, Feb 03 2016 *)
a(n)=9^n+n \\ Charles R Greathouse IV, Oct 07 2015
[6^n+n: n in [0..30]];
I:=[1, 7, 38]; [n le 3 select I[n] else 8*Self(n-1)-13*Self(n-2)+6*Self(n-3): n in [1..30]];
Table[6^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 5 x^2) / ((6 x - 1) (x - 1)^2), {x, 0, 30}], x]
a(n)=6^n+n \\ Charles R Greathouse IV, Oct 07 2015
[11^n+n: n in [0..30]];
I:=[1, 12, 123]; [n le 3 select I[n] else 13*Self(n-1)-23*Self(n-2)+11*Self(n-3): n in [1..30]];
Table[11^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 10 x^2) / ((11 x - 1) (x - 1)^2), {x, 0, 30}], x] LinearRecurrence[{13,-23,11},{1,12,123},20] (* Harvey P. Dale, Nov 14 2018 *)
a(n)=11^n+n \\ Charles R Greathouse IV, Oct 07 2015
is(n) = ispseudoprime(7^(n-1)+n)
a(7) = 10 + A001222(10) = 10 + 2 = 12
m = 100; Select[Union @ Table[n + PrimeOmega[n], {n, 1, m}], # <= m &] (* Amiram Eldar, Aug 28 2020 *)
upto(limit)=Set(select(t->t<=limit, apply(m->m+bigomega(m), [1..limit]))) \\ Andrew Howroyd, Aug 27 2020
list(lim)=my(v=List()); forfactored(n=1, lim\1-1, my(t=n[1]+bigomega(n)); if(t<=lim, listput(v, t))); Set(v) \\ Charles R Greathouse IV, Dec 07 2022
Comments