A226199
a(n) = 7^n + n.
Original entry on oeis.org
1, 8, 51, 346, 2405, 16812, 117655, 823550, 5764809, 40353616, 282475259, 1977326754, 13841287213, 96889010420, 678223072863, 4747561509958, 33232930569617, 232630513987224, 1628413597910467, 11398895185373162, 79792266297612021, 558545864083284028, 3909821048582988071
Offset: 0
-
[7^n+n: n in [0..20]];
-
I:=[1, 8, 51]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]];
-
Table[7^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - x - 6 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 20}], x]
LinearRecurrence[{9,-15,7},{1,8,51},30] (* Harvey P. Dale, Jun 16 2025 *)
-
a(n)=7^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226201
a(n) = 8^n + n.
Original entry on oeis.org
1, 9, 66, 515, 4100, 32773, 262150, 2097159, 16777224, 134217737, 1073741834, 8589934603, 68719476748, 549755813901, 4398046511118, 35184372088847, 281474976710672, 2251799813685265, 18014398509482002, 144115188075855891, 1152921504606846996, 9223372036854775829
Offset: 0
-
[8^n+n: n in [0..30]];
-
I:=[1, 9, 66]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];
-
Table[8^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 7 x^2) / ((8 x - 1) (x - 1)^2), {x, 0, 30}], x]
LinearRecurrence[{10,-17,8},{1,9,66},30] (* Harvey P. Dale, Aug 11 2015 *)
-
a(n)=8^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226202
a(n) = 9^n + n.
Original entry on oeis.org
1, 10, 83, 732, 6565, 59054, 531447, 4782976, 43046729, 387420498, 3486784411, 31381059620, 282429536493, 2541865828342, 22876792454975, 205891132094664, 1853020188851857, 16677181699666586, 150094635296999139, 1350851717672992108, 12157665459056928821, 109418989131512359230
Offset: 0
-
[9^n+n: n in [0..30]];
-
I:=[1, 10, 83]; [n le 3 select I[n] else 11*Self(n-1)-19*Self(n-2)+9*Self(n-3): n in [1..30]];
-
Table[9^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 8 x^2) / ((9 x - 1) (x - 1)^2), {x, 0, 30}], x]
LinearRecurrence[{11,-19,9},{1,10,83},20] (* Harvey P. Dale, Feb 03 2016 *)
-
a(n)=9^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226737
a(n) = 11^n + n.
Original entry on oeis.org
1, 12, 123, 1334, 14645, 161056, 1771567, 19487178, 214358889, 2357947700, 25937424611, 285311670622, 3138428376733, 34522712143944, 379749833583255, 4177248169415666, 45949729863572177, 505447028499293788, 5559917313492231499, 61159090448414546310, 672749994932560009221
Offset: 0
-
[11^n+n: n in [0..30]];
-
I:=[1, 12, 123]; [n le 3 select I[n] else 13*Self(n-1)-23*Self(n-2)+11*Self(n-3): n in [1..30]];
-
Table[11^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 10 x^2) / ((11 x - 1) (x - 1)^2), {x, 0, 30}], x]
LinearRecurrence[{13,-23,11},{1,12,123},20] (* Harvey P. Dale, Nov 14 2018 *)
-
a(n)=11^n+n \\ Charles R Greathouse IV, Oct 07 2015
A370190
Numbers k such that (6^k + 6*k)/6 is prime.
Original entry on oeis.org
1, 5, 7, 1003, 40513
Offset: 1
Showing 1-5 of 5 results.
Comments