cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A226199 a(n) = 7^n + n.

Original entry on oeis.org

1, 8, 51, 346, 2405, 16812, 117655, 823550, 5764809, 40353616, 282475259, 1977326754, 13841287213, 96889010420, 678223072863, 4747561509958, 33232930569617, 232630513987224, 1628413597910467, 11398895185373162, 79792266297612021, 558545864083284028, 3909821048582988071
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

Smallest prime of this form is a(34) = 54116956037952111668959660883.
In general, the g.f. of a sequence of numbers of the form k^n + n is (1-x-(k-1)*x^2)/((1-k*x)*(x-1)^2) with main linear recurrence (k+2)*a(n-1) - (2*k+1)*a(n-2) + k*a(n-3). - Bruno Berselli, Jun 16 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), this sequence (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199483 (first differences), A370657.

Programs

  • Magma
    [7^n+n: n in [0..20]];
    
  • Magma
    I:=[1, 8, 51]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[7^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - x - 6 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 20}], x]
    LinearRecurrence[{9,-15,7},{1,8,51},30] (* Harvey P. Dale, Jun 16 2025 *)
  • PARI
    a(n)=7^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1-x-6*x^2)/((1-7*x)*(1-x)^2).
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3).
E.g.f.: exp(x)*(exp(6*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226202 a(n) = 9^n + n.

Original entry on oeis.org

1, 10, 83, 732, 6565, 59054, 531447, 4782976, 43046729, 387420498, 3486784411, 31381059620, 282429536493, 2541865828342, 22876792454975, 205891132094664, 1853020188851857, 16677181699666586, 150094635296999139, 1350851717672992108, 12157665459056928821, 109418989131512359230
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

After 83, the next prime of this form is a(76). - Bruno Berselli, Jun 18 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), A226201 (k=8), this sequence (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199677 (first differences).

Programs

  • Magma
    [9^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 10, 83]; [n le 3 select I[n] else 11*Self(n-1)-19*Self(n-2)+9*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[9^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 8 x^2) / ((9 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{11,-19,9},{1,10,83},20] (* Harvey P. Dale, Feb 03 2016 *)
  • PARI
    a(n)=9^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+8*x^2)/((9*x-1)*(x-1)^2).
a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3).
E.g.f.: exp(x)*(exp(8*x) + x). - Elmo R. Oliveira, Sep 09 2024

A226200 a(n) = 6^n + n.

Original entry on oeis.org

1, 7, 38, 219, 1300, 7781, 46662, 279943, 1679624, 10077705, 60466186, 362797067, 2176782348, 13060694029, 78364164110, 470184984591, 2821109907472, 16926659444753, 101559956668434, 609359740010515, 3656158440062996, 21936950640377877, 131621703842267158, 789730223053602839
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

After 7, the next prime of this form has 238 digits (see A058828). - Bruno Berselli, Jun 18 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), this sequence (k=6), A226199 (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A058828, A199320 (first differences).

Programs

  • Magma
    [6^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 7, 38]; [n le 3 select I[n] else 8*Self(n-1)-13*Self(n-2)+6*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[6^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 5 x^2) / ((6 x - 1) (x - 1)^2), {x, 0, 30}], x]
  • PARI
    a(n)=6^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+5*x^2)/((6*x-1)*(x-1)^2).
a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3).
E.g.f.: exp(x)*(exp(5*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226737 a(n) = 11^n + n.

Original entry on oeis.org

1, 12, 123, 1334, 14645, 161056, 1771567, 19487178, 214358889, 2357947700, 25937424611, 285311670622, 3138428376733, 34522712143944, 379749833583255, 4177248169415666, 45949729863572177, 505447028499293788, 5559917313492231499, 61159090448414546310, 672749994932560009221
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), this sequence (k=11).
Cf. A199764 (first differences).

Programs

  • Magma
    [11^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 12, 123]; [n le 3 select I[n] else 13*Self(n-1)-23*Self(n-2)+11*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[11^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 10 x^2) / ((11 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{13,-23,11},{1,12,123},20] (* Harvey P. Dale, Nov 14 2018 *)
  • PARI
    a(n)=11^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+10*x^2)/((11*x-1)*(x-1)^2).
a(n) = 13*a(n-1) - 23*a(n-2) + 11*a(n-3).
E.g.f.: exp(x)*(exp(10*x) + x). - Elmo R. Oliveira, Mar 06 2025

A221910 a(n) = 8^n + 8*n.

Original entry on oeis.org

1, 16, 80, 536, 4128, 32808, 262192, 2097208, 16777280, 134217800, 1073741904, 8589934680, 68719476832, 549755813992, 4398046511216, 35184372088952, 281474976710784, 2251799813685384, 18014398509482128, 144115188075856024, 1152921504606847136, 9223372036854775976
Offset: 0

Views

Author

Vincenzo Librandi, Mar 02 2013

Keywords

Crossrefs

Programs

  • Magma
    [8^n + 8*n: n in [0..30]];
    
  • Magma
    I:=[1, 16, 80]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[(8^n + 8 n), {n, 0, 30}] (* or *) CoefficientList[Series[(1 + 6 x - 63 x^2)/((1 - x)^2(1 - 8 x)), {x, 0, 30}], x]
    LinearRecurrence[{10,-17,8},{1,16,80},20] (* Harvey P. Dale, May 29 2021 *)
  • PARI
    a(n)=8^n+8*n \\ Charles R Greathouse IV, Apr 18 2013

Formula

G.f.: (1+6*x-63*x^2)/((1-x)^2*(1-8*x)).
a(n) = 10*a(n-1) - 17*a(n-2) + 8*a(n-3).
E.g.f.: exp(x)*(exp(7*x) + 8*x). - Elmo R. Oliveira, Sep 10 2024

A370661 Numbers k such that (8^k + 8*k)/8 is prime.

Original entry on oeis.org

1, 3, 7, 15, 3907
Offset: 1

Views

Author

Hugo Pfoertner, Feb 27 2024

Keywords

Comments

If it exists, a(6) > 50000.

Crossrefs

Programs

  • PARI
    is(n) = ispseudoprime(8^(n-1) + n)
Showing 1-6 of 6 results.