cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A081552 Leading terms of rows in A081551.

Original entry on oeis.org

1, 11, 102, 1003, 10004, 100005, 1000006, 10000007, 100000008, 1000000009, 10000000010, 100000000011, 1000000000012, 10000000000013, 100000000000014, 1000000000000015, 10000000000000016, 100000000000000017, 1000000000000000018
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2003

Keywords

Comments

More generally, a(n) = B^K + n; K = floor(log_B a(n-1)) + 1. This sequence has B=10, a(0)=1; A006127 has B=2, a(0)=1; A052944 has B=2, a(0)=2; A104743 has B=3, a(0)=1; A104745 has B=5, a(0)=1. - Ctibor O. Zizka, Mar 22 2008

Crossrefs

Cf. A011557, A081551, A081553, A085952 (first differences, after n=2).

Programs

  • Magma
    [10^(n-1)+n-1: n in [1..20]]; // Vincenzo Librandi, Jun 16 2013
    
  • Magma
    I:=[1, 11, 102]; [n le 3 select I[n] else 12*Self(n-1)-21*Self(n-2)+10*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
    
  • Maple
    seq(10^(n-1) +n-1, n=1..40); # G. C. Greubel, May 27 2021
  • Mathematica
    Table[10^(n-1) +n-1, {n,30}] (* or *) CoefficientList[Series[(1-x-9x^2)/((1-10x)(1-x)^2), {x, 0, 30}], x]  (* Vincenzo Librandi, Jun 16 2013 *)
  • Sage
    [10^(n-1) +n-1 for n in (1..40)] # G. C. Greubel, May 27 2021

Formula

a(n) = 10^(n-1) + n-1.
G.f.: x*(1 -x -9*x^2)/((1-10*x)*(1-x)^2). - Vincenzo Librandi, Jun 16 2013
a(n) = 12*a(n-1) -21*a(n-2) +10*a(n-3). - Vincenzo Librandi, Jun 16 2013
E.g.f.: (1/10)*(9 - 10*(1-x)*exp(x) + exp(10*x)). - G. C. Greubel, May 27 2021

A158879 a(n) = 4^n + n.

Original entry on oeis.org

1, 5, 18, 67, 260, 1029, 4102, 16391, 65544, 262153, 1048586, 4194315, 16777228, 67108877, 268435470, 1073741839, 4294967312, 17179869201, 68719476754, 274877906963, 1099511627796, 4398046511125, 17592186044438, 70368744177687
Offset: 0

Views

Author

Philippe Deléham, Mar 28 2009

Keywords

Examples

			a(0)=4^0+0 = 1, a(1)=4^1+1 = 5, a(2)=4^2+2 = 18, a(3)=4^3+3 = 67, ...
		

Crossrefs

Programs

Formula

G.f.: (1 - x - 3*x^2)/((1-4*x)*(1-x)^2). - R. J. Mathar, Mar 29 2009
a(n) = 6*a(n-1) -9*a(n-2) +4*a(n-3). - R. J. Mathar, Mar 29 2009
E.g.f.: x*exp(x) + exp(4*x). - G. C. Greubel, Mar 04 2020

Extensions

Corrected typo in a(22) from R. J. Mathar, Mar 29 2009

A226199 a(n) = 7^n + n.

Original entry on oeis.org

1, 8, 51, 346, 2405, 16812, 117655, 823550, 5764809, 40353616, 282475259, 1977326754, 13841287213, 96889010420, 678223072863, 4747561509958, 33232930569617, 232630513987224, 1628413597910467, 11398895185373162, 79792266297612021, 558545864083284028, 3909821048582988071
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

Smallest prime of this form is a(34) = 54116956037952111668959660883.
In general, the g.f. of a sequence of numbers of the form k^n + n is (1-x-(k-1)*x^2)/((1-k*x)*(x-1)^2) with main linear recurrence (k+2)*a(n-1) - (2*k+1)*a(n-2) + k*a(n-3). - Bruno Berselli, Jun 16 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), this sequence (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199483 (first differences), A370657.

Programs

  • Magma
    [7^n+n: n in [0..20]];
    
  • Magma
    I:=[1, 8, 51]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[7^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - x - 6 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 20}], x]
    LinearRecurrence[{9,-15,7},{1,8,51},30] (* Harvey P. Dale, Jun 16 2025 *)
  • PARI
    a(n)=7^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1-x-6*x^2)/((1-7*x)*(1-x)^2).
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3).
E.g.f.: exp(x)*(exp(6*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226201 a(n) = 8^n + n.

Original entry on oeis.org

1, 9, 66, 515, 4100, 32773, 262150, 2097159, 16777224, 134217737, 1073741834, 8589934603, 68719476748, 549755813901, 4398046511118, 35184372088847, 281474976710672, 2251799813685265, 18014398509482002, 144115188075855891, 1152921504606846996, 9223372036854775829
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

Smallest prime of this form is a(101). - Bruno Berselli, Jun 17 2013

Crossrefs

Cf. numbers of the form k^n+n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), this sequence (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199555 (first differences).

Programs

  • Magma
    [8^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 9, 66]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[8^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 7 x^2) / ((8 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{10,-17,8},{1,9,66},30] (* Harvey P. Dale, Aug 11 2015 *)
  • PARI
    a(n)=8^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+7*x^2)/((8*x-1)*(x-1)^2).
a(n) = 10*a(n-1) - 17*a(n-2) + 8*a(n-3).
E.g.f.: exp(x)*(exp(7*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226202 a(n) = 9^n + n.

Original entry on oeis.org

1, 10, 83, 732, 6565, 59054, 531447, 4782976, 43046729, 387420498, 3486784411, 31381059620, 282429536493, 2541865828342, 22876792454975, 205891132094664, 1853020188851857, 16677181699666586, 150094635296999139, 1350851717672992108, 12157665459056928821, 109418989131512359230
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

After 83, the next prime of this form is a(76). - Bruno Berselli, Jun 18 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), A226201 (k=8), this sequence (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199677 (first differences).

Programs

  • Magma
    [9^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 10, 83]; [n le 3 select I[n] else 11*Self(n-1)-19*Self(n-2)+9*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[9^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 8 x^2) / ((9 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{11,-19,9},{1,10,83},20] (* Harvey P. Dale, Feb 03 2016 *)
  • PARI
    a(n)=9^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+8*x^2)/((9*x-1)*(x-1)^2).
a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3).
E.g.f.: exp(x)*(exp(8*x) + x). - Elmo R. Oliveira, Sep 09 2024

A226200 a(n) = 6^n + n.

Original entry on oeis.org

1, 7, 38, 219, 1300, 7781, 46662, 279943, 1679624, 10077705, 60466186, 362797067, 2176782348, 13060694029, 78364164110, 470184984591, 2821109907472, 16926659444753, 101559956668434, 609359740010515, 3656158440062996, 21936950640377877, 131621703842267158, 789730223053602839
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

After 7, the next prime of this form has 238 digits (see A058828). - Bruno Berselli, Jun 18 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), this sequence (k=6), A226199 (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A058828, A199320 (first differences).

Programs

  • Magma
    [6^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 7, 38]; [n le 3 select I[n] else 8*Self(n-1)-13*Self(n-2)+6*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[6^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 5 x^2) / ((6 x - 1) (x - 1)^2), {x, 0, 30}], x]
  • PARI
    a(n)=6^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+5*x^2)/((6*x-1)*(x-1)^2).
a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3).
E.g.f.: exp(x)*(exp(5*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226737 a(n) = 11^n + n.

Original entry on oeis.org

1, 12, 123, 1334, 14645, 161056, 1771567, 19487178, 214358889, 2357947700, 25937424611, 285311670622, 3138428376733, 34522712143944, 379749833583255, 4177248169415666, 45949729863572177, 505447028499293788, 5559917313492231499, 61159090448414546310, 672749994932560009221
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), this sequence (k=11).
Cf. A199764 (first differences).

Programs

  • Magma
    [11^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 12, 123]; [n le 3 select I[n] else 13*Self(n-1)-23*Self(n-2)+11*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[11^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 10 x^2) / ((11 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{13,-23,11},{1,12,123},20] (* Harvey P. Dale, Nov 14 2018 *)
  • PARI
    a(n)=11^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+10*x^2)/((11*x-1)*(x-1)^2).
a(n) = 13*a(n-1) - 23*a(n-2) + 11*a(n-3).
E.g.f.: exp(x)*(exp(10*x) + x). - Elmo R. Oliveira, Mar 06 2025

A362555 Number of distinct n-digit suffixes generated by iteratively multiplying an integer by 6, where the initial integer is 1.

Original entry on oeis.org

2, 7, 28, 129, 630, 3131, 15632, 78133, 390634, 1953135, 9765636, 48828137, 244140638, 1220703139, 6103515640, 30517578141, 152587890642, 762939453143, 3814697265644, 19073486328145, 95367431640646, 476837158203147, 2384185791015648, 11920928955078149, 59604644775390650
Offset: 1

Views

Author

Gil Moses, Apr 24 2023

Keywords

Examples

			For n = 2, we begin with 1, iteratively multiply by 6 and count the terms before the last 2 digits begin to repeat. We obtain 1, 6, 36, 216, 1296, 7776, 46656, ... . The next term is 279936, which repeats the last 2 digits 36. Thus, the number of distinct terms is a(2) = 7.
		

Crossrefs

Cf. A362468 (with 4 as the multiplier).

Programs

Formula

a(n) = 5^(n-1) + n.
From Stefano Spezia, Apr 27 2023: (Start)
O.g.f.: (1 - 5*x + 4*x^2 - 4*x^3)/((1 - x)^2*(1 - 5*x)).
E.g.f.: (4 + exp(5*x) + 5*exp(x)*x)/4. (End)

A181572 Number of distinct prime divisors of 5^n + n.

Original entry on oeis.org

2, 1, 1, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 5, 5, 3, 2, 5, 4, 4, 4, 3, 2, 3, 5, 3, 4, 4, 5, 5, 4, 3, 3, 4, 4, 3, 5, 5, 4, 9, 3, 6, 6, 5, 4, 6, 3, 4, 5, 4, 3, 5, 5, 4, 9, 2, 5, 4, 4, 6, 7, 4, 3, 6, 7, 4, 7, 4, 6, 5, 4, 4, 7, 7, 4, 4, 5, 6, 8, 6, 3, 3, 6, 3, 9, 5, 4
Offset: 1

Views

Author

Michel Lagneau, Jan 30 2011

Keywords

Comments

5^n + n is composite for all n < 1000. - Pete L. Clark ( Department of Mathematics University of Georgia).
5^7954 + 7954 has been found to be prime by a computer (see Links).

Examples

			a(5) = 3 because 5^5 + 5 = 2*5*313 has 3 prime factors.
		

Crossrefs

Programs

  • Magma
    [#PrimeDivisors(5^n+n): n in [1..107]]; // Marius A. Burtea, Feb 19 2020
  • Maple
    with(numtheory):for n from 1 to 100 do:x:=5^n + n: y:=nops(factorset(x)):printf(`%d,  `,y):od:
  • Mathematica
    PrimeNu/@Table[5^n+n,{n,20}] (* Harvey P. Dale, Feb 17 2013 *)
  • PARI
    a(n)=omega(5^n+n) \\ Charles R Greathouse IV, Aug 27 2014
    

Formula

a(n) = A001221(A104745(n)). - Amiram Eldar, Feb 19 2020

Extensions

a(71)-a(87) from Amiram Eldar, Feb 19 2020

A370557 Numbers k such that A362555(k) = (5^k + 5*k)/5 is prime.

Original entry on oeis.org

1, 2, 1014, 16058
Offset: 1

Views

Author

Hugo Pfoertner, Feb 24 2024

Keywords

Comments

If it exists, a(5) > 50000.

Crossrefs

Programs

  • PARI
    is(n) = ispseudoprime(5^(n-1)+n)
Showing 1-10 of 13 results. Next