cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A104745 a(n) = 5^n + n.

Original entry on oeis.org

1, 6, 27, 128, 629, 3130, 15631, 78132, 390633, 1953134, 9765635, 48828136, 244140637, 1220703138, 6103515639, 30517578140, 152587890641, 762939453142, 3814697265643, 19073486328144, 95367431640645, 476837158203146, 2384185791015647, 11920928955078148, 59604644775390649
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Comments

Numbers m=5^n+n such that equation x=5^(m-x) has solution x=5^n, see A104744.
No primes of the form 5^n+n for n < 7954. - Thomas Ordowski, Oct 28 2013
a(7954) is prime (5560 digits). - Thomas Ordowski, May 07 2015

Crossrefs

Programs

Formula

From Vincenzo Librandi, Jun 16 2013: (Start)
G.f.: (1-x-4*x^2)/((1-5*x)*(1-x)^2).
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3). (End)
E.g.f.: exp(x)*(exp(4*x) + x). - Elmo R. Oliveira, Mar 05 2025

Extensions

More terms from Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 09 2007

A226199 a(n) = 7^n + n.

Original entry on oeis.org

1, 8, 51, 346, 2405, 16812, 117655, 823550, 5764809, 40353616, 282475259, 1977326754, 13841287213, 96889010420, 678223072863, 4747561509958, 33232930569617, 232630513987224, 1628413597910467, 11398895185373162, 79792266297612021, 558545864083284028, 3909821048582988071
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

Smallest prime of this form is a(34) = 54116956037952111668959660883.
In general, the g.f. of a sequence of numbers of the form k^n + n is (1-x-(k-1)*x^2)/((1-k*x)*(x-1)^2) with main linear recurrence (k+2)*a(n-1) - (2*k+1)*a(n-2) + k*a(n-3). - Bruno Berselli, Jun 16 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), this sequence (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199483 (first differences), A370657.

Programs

  • Magma
    [7^n+n: n in [0..20]];
    
  • Magma
    I:=[1, 8, 51]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[7^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - x - 6 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 20}], x]
    LinearRecurrence[{9,-15,7},{1,8,51},30] (* Harvey P. Dale, Jun 16 2025 *)
  • PARI
    a(n)=7^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1-x-6*x^2)/((1-7*x)*(1-x)^2).
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3).
E.g.f.: exp(x)*(exp(6*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226201 a(n) = 8^n + n.

Original entry on oeis.org

1, 9, 66, 515, 4100, 32773, 262150, 2097159, 16777224, 134217737, 1073741834, 8589934603, 68719476748, 549755813901, 4398046511118, 35184372088847, 281474976710672, 2251799813685265, 18014398509482002, 144115188075855891, 1152921504606846996, 9223372036854775829
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

Smallest prime of this form is a(101). - Bruno Berselli, Jun 17 2013

Crossrefs

Cf. numbers of the form k^n+n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), this sequence (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199555 (first differences).

Programs

  • Magma
    [8^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 9, 66]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[8^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 7 x^2) / ((8 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{10,-17,8},{1,9,66},30] (* Harvey P. Dale, Aug 11 2015 *)
  • PARI
    a(n)=8^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+7*x^2)/((8*x-1)*(x-1)^2).
a(n) = 10*a(n-1) - 17*a(n-2) + 8*a(n-3).
E.g.f.: exp(x)*(exp(7*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226202 a(n) = 9^n + n.

Original entry on oeis.org

1, 10, 83, 732, 6565, 59054, 531447, 4782976, 43046729, 387420498, 3486784411, 31381059620, 282429536493, 2541865828342, 22876792454975, 205891132094664, 1853020188851857, 16677181699666586, 150094635296999139, 1350851717672992108, 12157665459056928821, 109418989131512359230
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

After 83, the next prime of this form is a(76). - Bruno Berselli, Jun 18 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), A226201 (k=8), this sequence (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199677 (first differences).

Programs

  • Magma
    [9^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 10, 83]; [n le 3 select I[n] else 11*Self(n-1)-19*Self(n-2)+9*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[9^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 8 x^2) / ((9 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{11,-19,9},{1,10,83},20] (* Harvey P. Dale, Feb 03 2016 *)
  • PARI
    a(n)=9^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+8*x^2)/((9*x-1)*(x-1)^2).
a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3).
E.g.f.: exp(x)*(exp(8*x) + x). - Elmo R. Oliveira, Sep 09 2024

A226200 a(n) = 6^n + n.

Original entry on oeis.org

1, 7, 38, 219, 1300, 7781, 46662, 279943, 1679624, 10077705, 60466186, 362797067, 2176782348, 13060694029, 78364164110, 470184984591, 2821109907472, 16926659444753, 101559956668434, 609359740010515, 3656158440062996, 21936950640377877, 131621703842267158, 789730223053602839
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

After 7, the next prime of this form has 238 digits (see A058828). - Bruno Berselli, Jun 18 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), this sequence (k=6), A226199 (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A058828, A199320 (first differences).

Programs

  • Magma
    [6^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 7, 38]; [n le 3 select I[n] else 8*Self(n-1)-13*Self(n-2)+6*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[6^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 5 x^2) / ((6 x - 1) (x - 1)^2), {x, 0, 30}], x]
  • PARI
    a(n)=6^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+5*x^2)/((6*x-1)*(x-1)^2).
a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3).
E.g.f.: exp(x)*(exp(5*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226737 a(n) = 11^n + n.

Original entry on oeis.org

1, 12, 123, 1334, 14645, 161056, 1771567, 19487178, 214358889, 2357947700, 25937424611, 285311670622, 3138428376733, 34522712143944, 379749833583255, 4177248169415666, 45949729863572177, 505447028499293788, 5559917313492231499, 61159090448414546310, 672749994932560009221
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), this sequence (k=11).
Cf. A199764 (first differences).

Programs

  • Magma
    [11^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 12, 123]; [n le 3 select I[n] else 13*Self(n-1)-23*Self(n-2)+11*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[11^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 10 x^2) / ((11 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{13,-23,11},{1,12,123},20] (* Harvey P. Dale, Nov 14 2018 *)
  • PARI
    a(n)=11^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+10*x^2)/((11*x-1)*(x-1)^2).
a(n) = 13*a(n-1) - 23*a(n-2) + 11*a(n-3).
E.g.f.: exp(x)*(exp(10*x) + x). - Elmo R. Oliveira, Mar 06 2025

A324051 a(n) = A106315(A156552(n)).

Original entry on oeis.org

0, 1, 2, 5, 4, 2, 6, 0, 1, 18, 10, 3, 16, 4, 12, 67, 12, 4, 18, 30, 36, 260, 22, 16, 8, 8, 44, 5, 20, 1029, 30, 28, 164, 36, 28, 6, 256, 96, 44, 4102, 36, 7, 66, 16, 104, 16391, 46, 12, 13, 32, 130, 8, 28, 51, 70, 480, 942, 65544, 42, 9, 2724, 32, 66, 30, 84, 262153, 124, 508, 40, 10, 4, 1048586, 3320, 20, 188, 50, 52, 11, 78, 24
Offset: 2

Views

Author

Antti Karttunen, Feb 19 2019

Keywords

Comments

Positions of zeros, which is sequence A005940(1+A001599(n)) sorted into ascending order: 2, 9, 125, 325, 351, 4199, ..., has A324201 as its subsequence.

Crossrefs

Programs

Formula

a(n) = A106315(A156552(n)).
a(n) = (A156552(n)*A324105(n)) mod A323243(n).

A057909 Numbers k such that 4^k + k is prime.

Original entry on oeis.org

1, 3, 9, 15, 37, 85, 133, 225, 1233, 12793, 108889
Offset: 1

Views

Author

Robert G. Wilson v, Nov 16 2000

Keywords

Comments

a(11) > 20000. - Jinyuan Wang, Feb 01 2020

Crossrefs

Cf. A158879 (4^n + n).

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 4^n + n ], Print[ n ] ], {n, 0, 3000} ]
  • PARI
    is(n)=ispseudoprime(4^n+n) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(10) from Jinyuan Wang, Feb 01 2020
a(11) from Hugo Pfoertner, Mar 02 2024

A129963 Primes of the form 4^k + k.

Original entry on oeis.org

5, 67, 262153, 1073741839, 18889465931478580854821, 1496577676626844588240573268701473812127674924007509, 118571099379011784113736688648896417641748464297615937576404566024103044751294597
Offset: 1

Views

Author

Cino Hilliard, Jun 10 2007, Aug 20 2007

Keywords

Comments

It is convenient, although not necessary, to let k be an odd number since k even => 4^k + k is even > 2.
Conjecture: sequence is infinite.
The next term (a(8)) has 126 digits. - Harvey P. Dale, Jun 05 2014

Examples

			For k = 3, 4^3 + 3 = 67 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[4^n+n,{n,1,251,2}],PrimeQ] (* Harvey P. Dale, Jun 05 2014 *)
  • PARI
    f(n) = for(x=1,n,y=2^x+x;if(isprime(y),print1(y",")))

Formula

a(n) = A158879(A057909(n)). - Amiram Eldar, Jul 04 2024

A175976 a(n) = 4^n - 3*n + 1.

Original entry on oeis.org

2, 2, 11, 56, 245, 1010, 4079, 16364, 65513, 262118, 1048547, 4194272, 16777181, 67108826, 268435415, 1073741780, 4294967249, 17179869134, 68719476683, 274877906888, 1099511627717, 4398046511042, 17592186044351, 70368744177596, 281474976710585, 1125899906842550
Offset: 0

Views

Author

Vincenzo Librandi, Nov 02 2010

Keywords

Examples

			a(1)=4-3+1=2. a(2)=16-6+1=11.
		

Crossrefs

Programs

  • Magma
    [4^n-3*n+1: n in [0..30]]; // Vincenzo Librandi, Mar 20 2014
  • Maple
    A175976 := proc(n) 4^n-3*n+1 ; end proc:
  • Mathematica
    Table[4^n-3n+1,{n,0,30}] (* or *) LinearRecurrence[{6,-9,4},{2,2,11},30] (* Harvey P. Dale, Jul 07 2013 *)

Formula

G.f.: (-2+10*x-17*x^2)/((4*x-1)*(x-1)^2).
From Bruno Berselli, Nov 04 2010: (Start)
a(n) - 6*a(n-1) + 9*a(n-2) - 4*a(n-3) = 0 for n > 2.
a(n) = A158879(n) - A131098(n+1) (n > 0). (End)
E.g.f.: exp(x)*(1 - 3*x + exp(3*x)). - Elmo R. Oliveira, Mar 07 2025

Extensions

G.f., program and link to recurrences from R. J. Mathar, Nov 03 2010
Showing 1-10 of 11 results. Next