A057900
Numbers k such that 3^k + k is prime.
Original entry on oeis.org
2, 8, 34, 1532, 18248
Offset: 1
-
Do[ If[ PrimeQ[ 3^n + n ], Print[ n ] ], {n, 0, 3000} ]
v={2}; Do[If[EvenQ[n]&&Mod[n, 3]!=0&&!PrimeQ[n+1]&&PrimeQ[3^n+n], v=Append[v, n]; Print[v]], {n, 3, 19000}]
Select[Range[18500],PrimeQ[3^#+#]&] (* Harvey P. Dale, Jul 23 2013 *)
-
is(n)=ispseudoprime(3^n+n) \\ Charles R Greathouse IV, May 22 2017
A129963
Primes of the form 4^k + k.
Original entry on oeis.org
5, 67, 262153, 1073741839, 18889465931478580854821, 1496577676626844588240573268701473812127674924007509, 118571099379011784113736688648896417641748464297615937576404566024103044751294597
Offset: 1
For k = 3, 4^3 + 3 = 67 is prime.
-
Select[Table[4^n+n,{n,1,251,2}],PrimeQ] (* Harvey P. Dale, Jun 05 2014 *)
-
f(n) = for(x=1,n,y=2^x+x;if(isprime(y),print1(y",")))
A382786
Numbers k such that 5^k + k is prime.
Original entry on oeis.org
7954, 22102, 33054, 135156
Offset: 1
A100663
Composite q such that 4^q + q is prime.
Original entry on oeis.org
9, 15, 85, 133, 225, 1233, 12793, 108889
Offset: 1
-
For[n = 1, n < 5000, n++, If[Not[PrimeQ[n]], If[PrimeQ[4^n + n], Print[n]]]] (Steinerberger)
Select[Range[2,10000],!PrimeQ[#]&&PrimeQ[4^#+#]&] (* Harvey P. Dale, Mar 09 2014 *)
-
\\ p^q + q is prime q not prime
ptoqpq(p,n)= { local(x,y,q); for(q=6,n, if(q%2, if(!isprime(q), y=p^q+q; if(ispseudoprime(y),print1(q",")) ) ) ) }
Showing 1-4 of 4 results.
Comments