cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A104745 a(n) = 5^n + n.

Original entry on oeis.org

1, 6, 27, 128, 629, 3130, 15631, 78132, 390633, 1953134, 9765635, 48828136, 244140637, 1220703138, 6103515639, 30517578140, 152587890641, 762939453142, 3814697265643, 19073486328144, 95367431640645, 476837158203146, 2384185791015647, 11920928955078148, 59604644775390649
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Comments

Numbers m=5^n+n such that equation x=5^(m-x) has solution x=5^n, see A104744.
No primes of the form 5^n+n for n < 7954. - Thomas Ordowski, Oct 28 2013
a(7954) is prime (5560 digits). - Thomas Ordowski, May 07 2015

Crossrefs

Programs

Formula

From Vincenzo Librandi, Jun 16 2013: (Start)
G.f.: (1-x-4*x^2)/((1-5*x)*(1-x)^2).
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3). (End)
E.g.f.: exp(x)*(exp(4*x) + x). - Elmo R. Oliveira, Mar 05 2025

Extensions

More terms from Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 09 2007

A158879 a(n) = 4^n + n.

Original entry on oeis.org

1, 5, 18, 67, 260, 1029, 4102, 16391, 65544, 262153, 1048586, 4194315, 16777228, 67108877, 268435470, 1073741839, 4294967312, 17179869201, 68719476754, 274877906963, 1099511627796, 4398046511125, 17592186044438, 70368744177687
Offset: 0

Views

Author

Philippe Deléham, Mar 28 2009

Keywords

Examples

			a(0)=4^0+0 = 1, a(1)=4^1+1 = 5, a(2)=4^2+2 = 18, a(3)=4^3+3 = 67, ...
		

Crossrefs

Programs

Formula

G.f.: (1 - x - 3*x^2)/((1-4*x)*(1-x)^2). - R. J. Mathar, Mar 29 2009
a(n) = 6*a(n-1) -9*a(n-2) +4*a(n-3). - R. J. Mathar, Mar 29 2009
E.g.f.: x*exp(x) + exp(4*x). - G. C. Greubel, Mar 04 2020

Extensions

Corrected typo in a(22) from R. J. Mathar, Mar 29 2009

A226199 a(n) = 7^n + n.

Original entry on oeis.org

1, 8, 51, 346, 2405, 16812, 117655, 823550, 5764809, 40353616, 282475259, 1977326754, 13841287213, 96889010420, 678223072863, 4747561509958, 33232930569617, 232630513987224, 1628413597910467, 11398895185373162, 79792266297612021, 558545864083284028, 3909821048582988071
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

Smallest prime of this form is a(34) = 54116956037952111668959660883.
In general, the g.f. of a sequence of numbers of the form k^n + n is (1-x-(k-1)*x^2)/((1-k*x)*(x-1)^2) with main linear recurrence (k+2)*a(n-1) - (2*k+1)*a(n-2) + k*a(n-3). - Bruno Berselli, Jun 16 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), this sequence (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199483 (first differences), A370657.

Programs

  • Magma
    [7^n+n: n in [0..20]];
    
  • Magma
    I:=[1, 8, 51]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[7^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - x - 6 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 20}], x]
    LinearRecurrence[{9,-15,7},{1,8,51},30] (* Harvey P. Dale, Jun 16 2025 *)
  • PARI
    a(n)=7^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1-x-6*x^2)/((1-7*x)*(1-x)^2).
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3).
E.g.f.: exp(x)*(exp(6*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226201 a(n) = 8^n + n.

Original entry on oeis.org

1, 9, 66, 515, 4100, 32773, 262150, 2097159, 16777224, 134217737, 1073741834, 8589934603, 68719476748, 549755813901, 4398046511118, 35184372088847, 281474976710672, 2251799813685265, 18014398509482002, 144115188075855891, 1152921504606846996, 9223372036854775829
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

Smallest prime of this form is a(101). - Bruno Berselli, Jun 17 2013

Crossrefs

Cf. numbers of the form k^n+n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), this sequence (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199555 (first differences).

Programs

  • Magma
    [8^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 9, 66]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[8^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 7 x^2) / ((8 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{10,-17,8},{1,9,66},30] (* Harvey P. Dale, Aug 11 2015 *)
  • PARI
    a(n)=8^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+7*x^2)/((8*x-1)*(x-1)^2).
a(n) = 10*a(n-1) - 17*a(n-2) + 8*a(n-3).
E.g.f.: exp(x)*(exp(7*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226202 a(n) = 9^n + n.

Original entry on oeis.org

1, 10, 83, 732, 6565, 59054, 531447, 4782976, 43046729, 387420498, 3486784411, 31381059620, 282429536493, 2541865828342, 22876792454975, 205891132094664, 1853020188851857, 16677181699666586, 150094635296999139, 1350851717672992108, 12157665459056928821, 109418989131512359230
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

After 83, the next prime of this form is a(76). - Bruno Berselli, Jun 18 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), A226201 (k=8), this sequence (k=9), A081552 (k=10), A226737 (k=11).
Cf. A199677 (first differences).

Programs

  • Magma
    [9^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 10, 83]; [n le 3 select I[n] else 11*Self(n-1)-19*Self(n-2)+9*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[9^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 8 x^2) / ((9 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{11,-19,9},{1,10,83},20] (* Harvey P. Dale, Feb 03 2016 *)
  • PARI
    a(n)=9^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+8*x^2)/((9*x-1)*(x-1)^2).
a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3).
E.g.f.: exp(x)*(exp(8*x) + x). - Elmo R. Oliveira, Sep 09 2024

A226200 a(n) = 6^n + n.

Original entry on oeis.org

1, 7, 38, 219, 1300, 7781, 46662, 279943, 1679624, 10077705, 60466186, 362797067, 2176782348, 13060694029, 78364164110, 470184984591, 2821109907472, 16926659444753, 101559956668434, 609359740010515, 3656158440062996, 21936950640377877, 131621703842267158, 789730223053602839
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Comments

After 7, the next prime of this form has 238 digits (see A058828). - Bruno Berselli, Jun 18 2013

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), this sequence (k=6), A226199 (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11).
Cf. A058828, A199320 (first differences).

Programs

  • Magma
    [6^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 7, 38]; [n le 3 select I[n] else 8*Self(n-1)-13*Self(n-2)+6*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[6^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 5 x^2) / ((6 x - 1) (x - 1)^2), {x, 0, 30}], x]
  • PARI
    a(n)=6^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+5*x^2)/((6*x-1)*(x-1)^2).
a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3).
E.g.f.: exp(x)*(exp(5*x) + x). - Elmo R. Oliveira, Mar 05 2025

A226737 a(n) = 11^n + n.

Original entry on oeis.org

1, 12, 123, 1334, 14645, 161056, 1771567, 19487178, 214358889, 2357947700, 25937424611, 285311670622, 3138428376733, 34522712143944, 379749833583255, 4177248169415666, 45949729863572177, 505447028499293788, 5559917313492231499, 61159090448414546310, 672749994932560009221
Offset: 0

Views

Author

Vincenzo Librandi, Jun 16 2013

Keywords

Crossrefs

Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), A226200 (k=6), A226199 (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), this sequence (k=11).
Cf. A199764 (first differences).

Programs

  • Magma
    [11^n+n: n in [0..30]];
    
  • Magma
    I:=[1, 12, 123]; [n le 3 select I[n] else 13*Self(n-1)-23*Self(n-2)+11*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[11^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 10 x^2) / ((11 x - 1) (x - 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{13,-23,11},{1,12,123},20] (* Harvey P. Dale, Nov 14 2018 *)
  • PARI
    a(n)=11^n+n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (-1+x+10*x^2)/((11*x-1)*(x-1)^2).
a(n) = 13*a(n-1) - 23*a(n-2) + 11*a(n-3).
E.g.f.: exp(x)*(exp(10*x) + x). - Elmo R. Oliveira, Mar 06 2025

A081551 Triangle, read by rows, in which the n-th row contains n smallest n-digit numbers.

Original entry on oeis.org

1, 10, 11, 100, 101, 102, 1000, 1001, 1002, 1003, 10000, 10001, 10002, 10003, 10004, 100000, 100001, 100002, 100003, 100004, 100005, 1000000, 1000001, 1000002, 1000003, 1000004, 1000005, 1000006, 10000000, 10000001, 10000002, 10000003, 10000004, 10000005, 10000006, 10000007
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2003

Keywords

Comments

This sequence has asymptotic density 0 and Banach density 1 (see Mithun Kumar Das reference p.2). - Franz Vrabec, Jul 28 2019

Examples

			Triangle begins as:
       1;
      10,     11;
     100,    101,    102;
    1000,   1001,   1002,   1003;
   10000,  10001,  10002,  10003,  10004;
  100000, 100001, 100002, 100003, 100004, 100005;
		

Crossrefs

Programs

  • Mathematica
    Table[10^(n-1) +k-1, {n,12}, {k,n}]//Flatten (* G. C. Greubel, May 27 2021 *)
  • Sage
    flatten([[10^(n-1) +k-1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, May 27 2021

Formula

From Franz Vrabec, Jul 28 2019: (Start)
T(n, k) = 10^(n-1) + k - 1.
As a one-dimensional sequence: a(n) = 10^m + n - (m^2 + m + 2)/2 where m = floor((-1 + sqrt(8*n-7))/2). (End)

Extensions

More terms from Philippe Deléham, Mar 28 2009

A081553 Sum of n-th row of A081551.

Original entry on oeis.org

1, 21, 303, 4006, 50010, 600015, 7000021, 80000028, 900000036, 10000000045, 110000000055, 1200000000066, 13000000000078, 140000000000091, 1500000000000105, 16000000000000120, 170000000000000136, 1800000000000000153, 19000000000000000171, 200000000000000000190, 2100000000000000000210, 22000000000000000000231
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*10^(n-1) +n(n-1)/2, {n,40}] (* G. C. Greubel, May 27 2021 *)
  • Sage
    [n*10^(n-1) +binomial(n,2) for n in (1..40)] # G. C. Greubel, May 27 2021

Formula

a(n) = n*10^(n-1) + n*(n-1)/2.
From G. C. Greubel, May 27 2021: (Start)
G.f.: x*(1 -2*x -17*x^2 +99*x^3)/((1-x)^3 * (1-10*x)^2).
E.g.f.: (1/2)*x*( x*exp(x) + 2*exp(10*x) ). (End)

Extensions

Terms a(13) onward added by G. C. Greubel, May 27 2021

A266959 Smallest n-digit number ending in n.

Original entry on oeis.org

1, 12, 103, 1004, 10005, 100006, 1000007, 10000008, 100000009, 1000000010, 10000000011, 100000000012, 1000000000013, 10000000000014, 100000000000015, 1000000000000016, 10000000000000017, 100000000000000018, 1000000000000000019, 10000000000000000020
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 09 2016

Keywords

Comments

Digital sum of a(n) = digsum(n) + 1 for n>1.
3, 229, 4987 are the initial values of n for prime a(n). - Altug Alkan, Jan 17 2016

Examples

			a(4) = 1004 because it is the smallest 4-digit number ending in 4.
		

Crossrefs

Cf. A007953 (digsum), A081552, A279913.

Programs

  • Magma
    [1] cat [n+10^(n-1): n in [2..30]]; // Vincenzo Librandi, Jan 10 2016
    
  • Maple
    A266959:=n->n+10^(n-1): 1, seq(A266959(n), n=2..30);
  • Mathematica
    Join[{1}, Table[n + 10^(n - 1), {n, 2, 20}]]
  • PARI
    Vec(x*(1-20*x^2+10*x^3)/((1-x)^2*(1-10*x)) + O(x^30)) \\ Colin Barker, Jan 10 2016
    
  • PARI
    a(n) = if(n==1, 1, n + 10^(n-1)); \\ Altug Alkan, Jan 17 2016
    
  • Python
    def A266959(n): return n+10**(n-1) if n > 1 else 1 # Chai Wah Wu, Jul 25 2022

Formula

a(n) = n + 10^(n-1) for n>1 with a(1) = 1.
a(n) = A081552(n) - 1 for n>1. - Michel Marcus, Jan 10 2016
From Colin Barker, Jan 10 2016: (Start)
a(n) = 12*a(n-1) - 21*a(n-2) + 10*a(n-3) for n>3.
G.f.: x*(1-20*x^2+10*x^3) / ((1-x)^2*(1-10*x)). (End)
Showing 1-10 of 11 results. Next