A104745
a(n) = 5^n + n.
Original entry on oeis.org
1, 6, 27, 128, 629, 3130, 15631, 78132, 390633, 1953134, 9765635, 48828136, 244140637, 1220703138, 6103515639, 30517578140, 152587890641, 762939453142, 3814697265643, 19073486328144, 95367431640645, 476837158203146, 2384185791015647, 11920928955078148, 59604644775390649
Offset: 0
-
I:=[1, 6, 27]; [n le 3 select I[n] else 7*Self(n-1)-11*Self(n-2) +5*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
-
g:=1/(1-5*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)+n, n=0..31); # Zerinvary Lajos, Jan 09 2009
-
Table[5^n+n,{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
CoefficientList[Series[(1 - x - 4 x^2) / ((1 - 5 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
LinearRecurrence[{7,-11,5},{1,6,27},30] (* Harvey P. Dale, Dec 03 2017 *)
-
a(n)=5^n+n \\ Charles R Greathouse IV, Oct 07 2015
More terms from Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 09 2007
A158879
a(n) = 4^n + n.
Original entry on oeis.org
1, 5, 18, 67, 260, 1029, 4102, 16391, 65544, 262153, 1048586, 4194315, 16777228, 67108877, 268435470, 1073741839, 4294967312, 17179869201, 68719476754, 274877906963, 1099511627796, 4398046511125, 17592186044438, 70368744177687
Offset: 0
a(0)=4^0+0 = 1, a(1)=4^1+1 = 5, a(2)=4^2+2 = 18, a(3)=4^3+3 = 67, ...
-
List([0..30], n-> n+4^n); # G. C. Greubel, Mar 04 2020
-
[4^n+n: n in [0..30]]; // Vincenzo Librandi, Jun 16 2013
-
seq( 4^n+n, n=0..30); # G. C. Greubel, Mar 04 2020
-
Table[4^n+n,{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
CoefficientList[Series[(1-x-3x^2)/((1-4x)(1-x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
LinearRecurrence[{6,-9,4},{1,5,18},30] (* Harvey P. Dale, Jun 02 2016 *)
-
a(n)=4^n+n \\ Charles R Greathouse IV, Oct 07 2015
-
[n+4^n for n in (0..30)] # G. C. Greubel, Mar 04 2020
A226199
a(n) = 7^n + n.
Original entry on oeis.org
1, 8, 51, 346, 2405, 16812, 117655, 823550, 5764809, 40353616, 282475259, 1977326754, 13841287213, 96889010420, 678223072863, 4747561509958, 33232930569617, 232630513987224, 1628413597910467, 11398895185373162, 79792266297612021, 558545864083284028, 3909821048582988071
Offset: 0
-
[7^n+n: n in [0..20]];
-
I:=[1, 8, 51]; [n le 3 select I[n] else 9*Self(n-1)-15*Self(n-2)+7*Self(n-3): n in [1..30]];
-
Table[7^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - x - 6 x^2) / ((1 - 7 x) (1 - x)^2), {x, 0, 20}], x]
LinearRecurrence[{9,-15,7},{1,8,51},30] (* Harvey P. Dale, Jun 16 2025 *)
-
a(n)=7^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226201
a(n) = 8^n + n.
Original entry on oeis.org
1, 9, 66, 515, 4100, 32773, 262150, 2097159, 16777224, 134217737, 1073741834, 8589934603, 68719476748, 549755813901, 4398046511118, 35184372088847, 281474976710672, 2251799813685265, 18014398509482002, 144115188075855891, 1152921504606846996, 9223372036854775829
Offset: 0
-
[8^n+n: n in [0..30]];
-
I:=[1, 9, 66]; [n le 3 select I[n] else 10*Self(n-1)-17*Self(n-2)+8*Self(n-3): n in [1..30]];
-
Table[8^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 7 x^2) / ((8 x - 1) (x - 1)^2), {x, 0, 30}], x]
LinearRecurrence[{10,-17,8},{1,9,66},30] (* Harvey P. Dale, Aug 11 2015 *)
-
a(n)=8^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226202
a(n) = 9^n + n.
Original entry on oeis.org
1, 10, 83, 732, 6565, 59054, 531447, 4782976, 43046729, 387420498, 3486784411, 31381059620, 282429536493, 2541865828342, 22876792454975, 205891132094664, 1853020188851857, 16677181699666586, 150094635296999139, 1350851717672992108, 12157665459056928821, 109418989131512359230
Offset: 0
-
[9^n+n: n in [0..30]];
-
I:=[1, 10, 83]; [n le 3 select I[n] else 11*Self(n-1)-19*Self(n-2)+9*Self(n-3): n in [1..30]];
-
Table[9^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 8 x^2) / ((9 x - 1) (x - 1)^2), {x, 0, 30}], x]
LinearRecurrence[{11,-19,9},{1,10,83},20] (* Harvey P. Dale, Feb 03 2016 *)
-
a(n)=9^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226200
a(n) = 6^n + n.
Original entry on oeis.org
1, 7, 38, 219, 1300, 7781, 46662, 279943, 1679624, 10077705, 60466186, 362797067, 2176782348, 13060694029, 78364164110, 470184984591, 2821109907472, 16926659444753, 101559956668434, 609359740010515, 3656158440062996, 21936950640377877, 131621703842267158, 789730223053602839
Offset: 0
-
[6^n+n: n in [0..30]];
-
I:=[1, 7, 38]; [n le 3 select I[n] else 8*Self(n-1)-13*Self(n-2)+6*Self(n-3): n in [1..30]];
-
Table[6^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 5 x^2) / ((6 x - 1) (x - 1)^2), {x, 0, 30}], x]
-
a(n)=6^n+n \\ Charles R Greathouse IV, Oct 07 2015
A226737
a(n) = 11^n + n.
Original entry on oeis.org
1, 12, 123, 1334, 14645, 161056, 1771567, 19487178, 214358889, 2357947700, 25937424611, 285311670622, 3138428376733, 34522712143944, 379749833583255, 4177248169415666, 45949729863572177, 505447028499293788, 5559917313492231499, 61159090448414546310, 672749994932560009221
Offset: 0
-
[11^n+n: n in [0..30]];
-
I:=[1, 12, 123]; [n le 3 select I[n] else 13*Self(n-1)-23*Self(n-2)+11*Self(n-3): n in [1..30]];
-
Table[11^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(- 1 + x + 10 x^2) / ((11 x - 1) (x - 1)^2), {x, 0, 30}], x]
LinearRecurrence[{13,-23,11},{1,12,123},20] (* Harvey P. Dale, Nov 14 2018 *)
-
a(n)=11^n+n \\ Charles R Greathouse IV, Oct 07 2015
A081551
Triangle, read by rows, in which the n-th row contains n smallest n-digit numbers.
Original entry on oeis.org
1, 10, 11, 100, 101, 102, 1000, 1001, 1002, 1003, 10000, 10001, 10002, 10003, 10004, 100000, 100001, 100002, 100003, 100004, 100005, 1000000, 1000001, 1000002, 1000003, 1000004, 1000005, 1000006, 10000000, 10000001, 10000002, 10000003, 10000004, 10000005, 10000006, 10000007
Offset: 1
Triangle begins as:
1;
10, 11;
100, 101, 102;
1000, 1001, 1002, 1003;
10000, 10001, 10002, 10003, 10004;
100000, 100001, 100002, 100003, 100004, 100005;
-
Table[10^(n-1) +k-1, {n,12}, {k,n}]//Flatten (* G. C. Greubel, May 27 2021 *)
-
flatten([[10^(n-1) +k-1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, May 27 2021
Original entry on oeis.org
1, 21, 303, 4006, 50010, 600015, 7000021, 80000028, 900000036, 10000000045, 110000000055, 1200000000066, 13000000000078, 140000000000091, 1500000000000105, 16000000000000120, 170000000000000136, 1800000000000000153, 19000000000000000171, 200000000000000000190, 2100000000000000000210, 22000000000000000000231
Offset: 1
-
Table[n*10^(n-1) +n(n-1)/2, {n,40}] (* G. C. Greubel, May 27 2021 *)
-
[n*10^(n-1) +binomial(n,2) for n in (1..40)] # G. C. Greubel, May 27 2021
A266959
Smallest n-digit number ending in n.
Original entry on oeis.org
1, 12, 103, 1004, 10005, 100006, 1000007, 10000008, 100000009, 1000000010, 10000000011, 100000000012, 1000000000013, 10000000000014, 100000000000015, 1000000000000016, 10000000000000017, 100000000000000018, 1000000000000000019, 10000000000000000020
Offset: 1
a(4) = 1004 because it is the smallest 4-digit number ending in 4.
-
[1] cat [n+10^(n-1): n in [2..30]]; // Vincenzo Librandi, Jan 10 2016
-
A266959:=n->n+10^(n-1): 1, seq(A266959(n), n=2..30);
-
Join[{1}, Table[n + 10^(n - 1), {n, 2, 20}]]
-
Vec(x*(1-20*x^2+10*x^3)/((1-x)^2*(1-10*x)) + O(x^30)) \\ Colin Barker, Jan 10 2016
-
a(n) = if(n==1, 1, n + 10^(n-1)); \\ Altug Alkan, Jan 17 2016
-
def A266959(n): return n+10**(n-1) if n > 1 else 1 # Chai Wah Wu, Jul 25 2022
Showing 1-10 of 11 results.
Comments