A104745 a(n) = 5^n + n.
1, 6, 27, 128, 629, 3130, 15631, 78132, 390633, 1953134, 9765635, 48828136, 244140637, 1220703138, 6103515639, 30517578140, 152587890641, 762939453142, 3814697265643, 19073486328144, 95367431640645, 476837158203146, 2384185791015647, 11920928955078148, 59604644775390649
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Factordb, 5^7954 + 7954.
- Index entries for linear recurrences with constant coefficients, signature (7,-11,5).
Programs
-
Magma
I:=[1, 6, 27]; [n le 3 select I[n] else 7*Self(n-1)-11*Self(n-2) +5*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
-
Maple
g:=1/(1-5*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)+n, n=0..31); # Zerinvary Lajos, Jan 09 2009
-
Mathematica
Table[5^n+n,{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *) CoefficientList[Series[(1 - x - 4 x^2) / ((1 - 5 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *) LinearRecurrence[{7,-11,5},{1,6,27},30] (* Harvey P. Dale, Dec 03 2017 *)
-
PARI
a(n)=5^n+n \\ Charles R Greathouse IV, Oct 07 2015
Formula
From Vincenzo Librandi, Jun 16 2013: (Start)
G.f.: (1-x-4*x^2)/((1-5*x)*(1-x)^2).
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3). (End)
E.g.f.: exp(x)*(exp(4*x) + x). - Elmo R. Oliveira, Mar 05 2025
Extensions
More terms from Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 09 2007
Comments