A183119 Magnetic Tower of Hanoi, total number of moves generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; BLUE] pre-colored puzzle.
0, 1, 4, 11, 32, 93, 276, 823, 2464, 7385, 22148, 66435, 199296, 597877, 1793620, 5380847, 16142528, 48427569, 145282692, 435848059, 1307544160, 3922632461, 11767897364, 35303692071, 105911076192, 317733228553, 953199685636, 2859599056883, 8578797170624, 25736391511845
Offset: 0
References
- Uri Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..2070
- Uri Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- Uri Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843 [math.CO], 2010.
- Uri Levy, to play The Magnetic Tower of Hanoi, web applet [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,3).
Crossrefs
A122983 - "Binomial transform of aeration of A081294" is an "original" sequence (also) describing the number of moves of disk number k, solving the pre-colored puzzle at hand when executing the "75" algorithm mentioned above and presented in the paper referenced by link 1 above. The integer sequence listed above is the partial sums of the A122983 original sequence.
Programs
-
Magma
[3^(n+1)/8+(n-1)/2+(-1)^n/8: n in [0..30]]; // Vincenzo Librandi, Dec 04 2018
-
Maple
seq(coeff(series(x*(3*x^2-1)/((1+x)*(3*x-1)*(x-1)^2),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Dec 04 2018
-
Mathematica
LinearRecurrence[{4, -2, -4, 3}, {0, 1, 4, 11}, 30] (* Jean-François Alcover, Dec 04 2018 *) Table[3^(n + 1) / 8 + (n - 1) / 2 + (-1)^n / 8, {n, 0, 30}] (* Vincenzo Librandi, Dec 04 2018 *)
-
PARI
a(n) = 3^(n+1)/8 + (n-1)/2 + (-1)^n/8 \\ Charles R Greathouse IV, Jun 11 2015
Formula
G.f.: x*(-1+3*x^2) / ( (1+x)*(3*x-1)*(x-1)^2 ).
(a(n)=S75(n) in referenced paper):
a(n) = 3*a(n-1) - n + 3; n even; n >= 2
a(n) = 3*a(n-1) - n + 2; n odd; n >= 1
a(n) = a(n-2) + 3^(n-1) + 1; n >= 2
a(n) = 3^(n+1)/8 + (n-1)/2 +(-1)^n/8.
Extensions
More terms from Jean-François Alcover, Dec 04 2018
Comments