A183121 Magnetic Tower of Hanoi, total number of moves, generated by a certain algorithm, yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle.
0, 1, 4, 11, 30, 85, 244, 715, 2118, 6317, 18900, 56635, 169822, 509365, 1527972, 4583771, 13751142, 41253229, 123759460, 371278123, 1113834078, 3341501909, 10024505364, 30073515691, 90220546630, 270661639405, 811984917684, 2435954752475, 7307864256798, 21923592769717, 65770778308420, 197312334924475
Offset: 0
References
- U. Levy, The Magnetic Tower of Hanoi, Journal of Recreational Mathematics, Volume 35 Number 3 (2006), 2010, pp 173.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..2000
- U. Levy, The Magnetic Tower of Hanoi, arXiv:1003.0225 [math.CO], 2010.
- U. Levy, Magnetic Towers of Hanoi and their Optimal Solutions, arXiv:1011.3843, 2010.
- U. Levy, to play The Magnetic Tower of Hanoi, web applet. [Broken link]
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-2,7,-3).
Crossrefs
A183120 - is an "original" sequence describing the number of moves of disk number k, solving the pre-colored puzzle at hand when executing the "64" algorithm mentioned above.
A104743 - is a sequence also describing the total number of moves, generated by another algorithm, designated "67", yielding a "forward moving" non-optimal solution of the [RED ; NEUTRAL ; NEUTRAL] or [NEUTRAL ; NEUTRAL ; BLUE] pre-colored puzzle at hand. Recurrence relations for this sequence is a(n) = a(n-1) + 2*3^(n-2) + 1 and the closed-form expression is 3^(n-1) + n - 1. Large N limit is 0.5*(2/3)*3^N =~ 0.5*0.67*3^N, and sequence designation is thus S67(n). The (non-optimal) "67" algorithm solving the Magnetic Tower of Hanoi with the given pre-coloring configuration yielding the S67(n) sequence (given by A104743) is explicitly described and discussed in the paper referenced in link 1 above.
Programs
-
Magma
I:=[0,1,4,11,30,85,244]; [n le 7 select I[n] else 5*Self(n-1)-6*Self(n-2)-2*Self(n-3)+7*Self(n-4)-3*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Dec 04 2018
-
Maple
seq(coeff(series(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3)), x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Dec 04 2018
-
Mathematica
Join[{0, 1}, LinearRecurrence[{5, -6, -2, 7, -3}, {4, 11, 30, 85, 244}, 30]] (* Jean-François Alcover, Dec 04 2018 *) CoefficientList[Series[x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 04 2018 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/ ((1+x)*(1-3*x)*(1-x)^3))) \\ G. C. Greubel, Dec 04 2018
-
Sage
s=(x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3) ).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018
Formula
G.f.: x*(1-x-3*x^2+x^3+2*x^4-4*x^5)/((1+x)*(1-3*x)*(1-x)^3).
(a(n) = S64(n) as in referenced paper):
a(n) = 3*a(n-1) - n^2 + 6*n - 11; n even; n >= 4.
a(n) = 3*a(n-1) - n^2 + 6*n - 10; n odd; n >= 3.
a(n) = a(n-1) + 2* S75(n-3) + 5*3^(n-3) + 2; n >= 3
S75(n) refers to the integer sequence described by A183119.
a(n) = 0.5*(23/36)*3^n + 0.5*n^2 - 1.5*n + 17/8; n even; n >= 2.
a(n) = 0.5*(23/36)*3^n + 0.5*n^2 - 1.5*n + 19/8; n odd; n >= 3.
a(n) = 5*a(n-1)-6*a(n-2)-2*a(n-3)+7*a(n-4)-3*a(n-5), for n>5. - Vincenzo Librandi, Dec 04 2018
Extensions
More terms from Jean-François Alcover, Dec 04 2018
Comments