cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332178 a(n) = 7*(10^(2n+1)-1)/9 + 10^n.

Original entry on oeis.org

8, 787, 77877, 7778777, 777787777, 77777877777, 7777778777777, 777777787777777, 77777777877777777, 7777777778777777777, 777777777787777777777, 77777777777877777777777, 7777777777778777777777777, 777777777777787777777777777, 77777777777777877777777777777, 7777777777777778777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183182 = {1, 3, 39, 54, 168, 240, ...} for the indices of primes.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only).
Cf. (A077793-1)/2 = A183182: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332178 := n -> 7*(10^(n*2+1)-1)/9 + 10^n;
  • Mathematica
    Array[7 (10^(2 # + 1) - 1)/9 + 10^# &, 15, 0]
  • PARI
    apply( {A332178(n)=10^(n*2+1)\9*7+10^n}, [0..15])
    
  • Python
    def A332178(n): return 10**(n*2+1)//9*7+10^n

Formula

a(n) = 7*A138148(n) + 8*10^n.
G.f.: (8 - 101*x - 600*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A077793 Numbers k such that 7*(10^k - 1)/9 + 10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

3, 7, 79, 109, 337, 481, 10657, 12319, 49351, 104455, 227775
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.

Examples

			7 is a term because 7*(10^7 - 1)/9 + 10^3 = 7778777.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(7*10^n + 9*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 12400, 2}] (* Robert G. Wilson v, Dec 16 2005 *)

Formula

a(n) = 2*A183182(n) + 1.

Extensions

Name corrected by Jon E. Schoenfield, Oct 31 2018
a(9) from Robert Price, Oct 07 2023
a(10) from Robert Price, Oct 30 2023
a(11) from Robert Price, Aug 03 2024
Showing 1-2 of 2 results.