A332179
a(n) = 7*(10^(2n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
9, 797, 77977, 7779777, 777797777, 77777977777, 7777779777777, 777777797777777, 77777777977777777, 7777777779777777777, 777777777797777777777, 77777777777977777777777, 7777777777779777777777777, 777777777777797777777777777, 77777777777777977777777777777, 7777777777777779777777777777777
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332171 ..
A332178 (variants with different middle digit 1, ..., 8).
-
A332179 := n -> 7*(10^(n*2+1)-1)/9 + 2*10^n;
-
Array[7 (10^(2 # + 1) - 1)/9 + 2*10^# &, 15, 0]
-
apply( {A332179(n)=10^(n*2+1)\9*7+2*10^n}, [0..15])
-
def A332179(n): return 10**(n*2+1)//9*7+2*10^n
A332118
a(n) = (10^(2n+1) - 1)/9 + 7*10^n.
Original entry on oeis.org
8, 181, 11811, 1118111, 111181111, 11111811111, 1111118111111, 111111181111111, 11111111811111111, 1111111118111111111, 111111111181111111111, 11111111111811111111111, 1111111111118111111111111, 111111111111181111111111111, 11111111111111811111111111111, 1111111111111118111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)8(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11811...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes),
A077798 (palindromic wing primes),
A088281 (primes 1..1x1..1),
A068160 (smallest of given length),
A053701 (vertically symmetric numbers).
Cf.
A332112 ..
A332119 (variants with different middle digit 2, ..., 9).
-
A332118 := n -> (10^(2*n+1)-1)/9+7*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 7*10^# &, 15, 0]
-
apply( {A332118(n)=10^(n*2+1)\9+7*10^n}, [0..15])
-
def A332118(n): return 10**(n*2+1)//9+7*10**n
A332128
a(n) = 2*(10^(2n+1)-1)/9 + 6*10^n.
Original entry on oeis.org
8, 282, 22822, 2228222, 222282222, 22222822222, 2222228222222, 222222282222222, 22222222822222222, 2222222228222222222, 222222222282222222222, 22222222222822222222222, 2222222222228222222222222, 222222222222282222222222222, 22222222222222822222222222222, 2222222222222228222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332128 := n -> 2*(10^(2*n+1)-1)/9+6*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0]
-
apply( {A332128(n)=10^(n*2+1)\9*2+6*10^n}, [0..15])
-
def A332128(n): return 10**(n*2+1)//9*2+6*10**n
A332138
a(n) = (10^(2*n+1)-1)/3 + 5*10^n.
Original entry on oeis.org
8, 383, 33833, 3338333, 333383333, 33333833333, 3333338333333, 333333383333333, 33333333833333333, 3333333338333333333, 333333333383333333333, 33333333333833333333333, 3333333333338333333333333, 333333333333383333333333333, 33333333333333833333333333333, 3333333333333338333333333333333
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (3)8(3), updated: June 25, 2017.
- Makoto Kamada, Factorization of 33...33833...33, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332130 ..
A332139 (variants with different middle digit 0, ..., 9).
-
A332138 := n -> (10^(2*n+1)-1)/3+5*10^n;
-
Array[ (10^(2 # + 1)-1)/3 + 5*10^# &, 15, 0]
-
apply( {A332138(n)=10^(n*2+1)\3+5*10^n}, [0..15])
-
def A332138(n): return 10**(n*2+1)//3+5*10**n
A332148
a(n) = 4*(10^(2*n+1)-1)/9 + 4*10^n.
Original entry on oeis.org
8, 484, 44844, 4448444, 444484444, 44444844444, 4444448444444, 444444484444444, 44444444844444444, 4444444448444444444, 444444444484444444444, 44444444444844444444444, 4444444444448444444444444, 444444444444484444444444444, 44444444444444844444444444444, 4444444444444448444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332148 := n -> 4*((10^(2*n+1)-1)/9+10^n);
-
Array[4 ((10^(2 # + 1)-1)/9 + 10^#) &, 15, 0]
-
apply( {A332148(n)=(10^(n*2+1)\9+10^n)*4}, [0..15])
-
def A332148(n): return (10**(n*2+1)//9+10**n)*4
A332158
a(n) = 5*(10^(2*n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
8, 585, 55855, 5558555, 555585555, 55555855555, 5555558555555, 555555585555555, 55555555855555555, 5555555558555555555, 555555555585555555555, 55555555555855555555555, 5555555555558555555555555, 555555555555585555555555555, 55555555555555855555555555555, 5555555555555558555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332150 ..
A332159 (variants with different middle digit 0, ..., 9).
-
A332158 := n -> 5*(10^(2*n+1)-1)/9+3*10^n;
-
Array[5 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
-
apply( {A332158(n)=10^(n*2+1)\9*5+3*10^n}, [0..15])
-
def A332158(n): return 10**(n*2+1)//9*5+3*10**n
A332168
a(n) = 6*(10^(2*n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
8, 686, 66866, 6668666, 666686666, 66666866666, 6666668666666, 666666686666666, 66666666866666666, 6666666668666666666, 666666666686666666666, 66666666666866666666666, 6666666666668666666666666, 666666666666686666666666666, 66666666666666866666666666666, 6666666666666668666666666666666
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332160 ..
A332169 (variants with different middle digit 0, ..., 9).
-
A332168 := n -> 6*(10^(2*n+1)-1)/9+2*10^n;
-
Array[6 (10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,6],{8},PadRight[{},n,6]]],{n,0,20}] (* Harvey P. Dale, Oct 04 2021 *)
-
apply( {A332168(n)=10^(n*2+1)\9*6+2*10^n}, [0..15])
-
def A332168(n): return 10**(n*2+1)//9*6+2*10**n
Showing 1-7 of 7 results.
Comments