cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332178 a(n) = 7*(10^(2n+1)-1)/9 + 10^n.

Original entry on oeis.org

8, 787, 77877, 7778777, 777787777, 77777877777, 7777778777777, 777777787777777, 77777777877777777, 7777777778777777777, 777777777787777777777, 77777777777877777777777, 7777777777778777777777777, 777777777777787777777777777, 77777777777777877777777777777, 7777777777777778777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183182 = {1, 3, 39, 54, 168, 240, ...} for the indices of primes.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only).
Cf. (A077793-1)/2 = A183182: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332178 := n -> 7*(10^(n*2+1)-1)/9 + 10^n;
  • Mathematica
    Array[7 (10^(2 # + 1) - 1)/9 + 10^# &, 15, 0]
  • PARI
    apply( {A332178(n)=10^(n*2+1)\9*7+10^n}, [0..15])
    
  • Python
    def A332178(n): return 10**(n*2+1)//9*7+10^n

Formula

a(n) = 7*A138148(n) + 8*10^n.
G.f.: (8 - 101*x - 600*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A183182 Numbers k such that (7*10^(2*k+1) + 9*10^k - 7)/9 is prime.

Original entry on oeis.org

1, 3, 39, 54, 168, 240, 5328, 6159, 24675, 52227, 113887
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(7*10^(2n + 1) + 9*10^n - 7)/9], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime((7*10^(2*n+1)+9*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077793(n) - 1)/2.

Extensions

a(9) from Robert Price, Oct 07 2023
a(10) from Robert Price, Oct 30 2023
a(11) from Robert Price, Aug 03 2024
Showing 1-2 of 2 results.