A332191
a(n) = 10^(2n+1) - 1 - 8*10^n.
Original entry on oeis.org
1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, 999999999919999999999, 99999999999199999999999, 9999999999991999999999999, 999999999999919999999999999, 99999999999999199999999999999, 9999999999999991999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332121 ..
A332181 (variants with different repeated digit 2, ..., 8).
-
A332191 := n -> 10^(n*2+1)-1-8*10^n;
-
Array[ 10^(2 # + 1)-1-8*10^# &, 15, 0]
-
apply( {A332191(n)=10^(n*2+1)-1-8*10^n}, [0..15])
-
def A332191(n): return 10**(n*2+1)-1-8*10^n
A077776
Numbers k such that (10^k - 1) - 8*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 11, 27, 87, 339, 363, 3159, 36155, 45305, 314727
Offset: 1
27 is a term because (10^27 - 1) - 8*10^13 = 999999999999919999999999999.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[10^n - 8*10^Floor[n/2] - 1], Print[n]], {n, 3, 1000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A332181
a(n) = 8*(10^(2n+1)-1)/9 - 7*10^n.
Original entry on oeis.org
1, 818, 88188, 8881888, 888818888, 88888188888, 8888881888888, 888888818888888, 88888888188888888, 8888888881888888888, 888888888818888888888, 88888888888188888888888, 8888888888881888888888888, 888888888888818888888888888, 88888888888888188888888888888, 8888888888888881888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332121 ..
A332191 (variants with different repeated digit 2, ..., 9).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332181 := n -> 8*(10^(2*n+1)-1)/9-7*10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 7*10^# &, 15, 0]
-
apply( {A332181(n)=10^(n*2+1)\9*8-7*10^n}, [0..15])
-
def A332181(n): return 10**(n*2+1)//9*8-7*10**n
A331815
Numbers k such that 10^(2*k) - 8*10^(k-1) - 1 is prime.
Original entry on oeis.org
3, 4, 132, 471, 1935, 4258, 9444
Offset: 1
3 is a term because 999199 is prime.
4 is a term because 99991999 is prime.
Cf.
A077776 =
A183184*2+1: palindromic near-repdigit primes 9..919..9.
-
Select[Range[500], PrimeQ[10^(2*#) - 8*10^(#-1) - 1] &] (* Amiram Eldar, Jan 28 2020 *)
-
(is_A331815(n)=ispseudoprime(100^n-8*10^(n-1)-1)); for(n=1, 9999, is_A331815(n)&&print1(n", "))
Showing 1-4 of 4 results.
Comments