A332191
a(n) = 10^(2n+1) - 1 - 8*10^n.
Original entry on oeis.org
1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, 999999999919999999999, 99999999999199999999999, 9999999999991999999999999, 999999999999919999999999999, 99999999999999199999999999999, 9999999999999991999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332121 ..
A332181 (variants with different repeated digit 2, ..., 8).
-
A332191 := n -> 10^(n*2+1)-1-8*10^n;
-
Array[ 10^(2 # + 1)-1-8*10^# &, 15, 0]
-
apply( {A332191(n)=10^(n*2+1)-1-8*10^n}, [0..15])
-
def A332191(n): return 10**(n*2+1)-1-8*10^n
A183184
Numbers n such that 10^(2n+1)-8*10^n-1 is prime.
Original entry on oeis.org
1, 5, 13, 43, 169, 181, 1579, 18077, 22652, 157363
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[10^(2n + 1) - 8*10^n - 1], Print[n]], {n, 3000}]
-
is(n)=ispseudoprime(10^(2*n+1)-8*10^n-1) \\ Charles R Greathouse IV, Jun 13 2017
A332181
a(n) = 8*(10^(2n+1)-1)/9 - 7*10^n.
Original entry on oeis.org
1, 818, 88188, 8881888, 888818888, 88888188888, 8888881888888, 888888818888888, 88888888188888888, 8888888881888888888, 888888888818888888888, 88888888888188888888888, 8888888888881888888888888, 888888888888818888888888888, 88888888888888188888888888888, 8888888888888881888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332121 ..
A332191 (variants with different repeated digit 2, ..., 9).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332181 := n -> 8*(10^(2*n+1)-1)/9-7*10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 7*10^# &, 15, 0]
-
apply( {A332181(n)=10^(n*2+1)\9*8-7*10^n}, [0..15])
-
def A332181(n): return 10**(n*2+1)//9*8-7*10**n
A332187
a(n) = 8*(10^(2n+1)-1)/9 - 10^n.
Original entry on oeis.org
7, 878, 88788, 8887888, 888878888, 88888788888, 8888887888888, 888888878888888, 88888888788888888, 8888888887888888888, 888888888878888888888, 88888888888788888888888, 8888888888887888888888888, 888888888888878888888888888, 88888888888888788888888888888, 8888888888888887888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different "wing" digit 1, ..., 9).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332187 := n -> 8*(10^(2*n+1)-1)/9-10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{7,878,88788},20] (* Harvey P. Dale, Jul 21 2024 *)
-
apply( {A332187(n)=10^(n*2+1)\9*8-10^n}, [0..15])
-
def A332187(n): return 10**(n*2+1)//9*8-10**n
A331815
Numbers k such that 10^(2*k) - 8*10^(k-1) - 1 is prime.
Original entry on oeis.org
3, 4, 132, 471, 1935, 4258, 9444
Offset: 1
3 is a term because 999199 is prime.
4 is a term because 99991999 is prime.
Cf.
A077776 =
A183184*2+1: palindromic near-repdigit primes 9..919..9.
-
Select[Range[500], PrimeQ[10^(2*#) - 8*10^(#-1) - 1] &] (* Amiram Eldar, Jan 28 2020 *)
-
(is_A331815(n)=ispseudoprime(100^n-8*10^(n-1)-1)); for(n=1, 9999, is_A331815(n)&&print1(n", "))
Showing 1-5 of 5 results.
Comments