A332187 a(n) = 8*(10^(2n+1)-1)/9 - 10^n.
7, 878, 88788, 8887888, 888878888, 88888788888, 8888887888888, 888888878888888, 88888888788888888, 8888888887888888888, 888888888878888888888, 88888888888788888888888, 8888888888887888888888888, 888888888888878888888888888, 88888888888888788888888888888, 8888888888888887888888888888888
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A332187 := n -> 8*(10^(2*n+1)-1)/9-10^n;
-
Mathematica
Array[8 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0] LinearRecurrence[{111,-1110,1000},{7,878,88788},20] (* Harvey P. Dale, Jul 21 2024 *)
-
PARI
apply( {A332187(n)=10^(n*2+1)\9*8-10^n}, [0..15])
-
Python
def A332187(n): return 10**(n*2+1)//9*8-10**n