cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332187 a(n) = 8*(10^(2n+1)-1)/9 - 10^n.

Original entry on oeis.org

7, 878, 88788, 8887888, 888878888, 88888788888, 8888887888888, 888888878888888, 88888888788888888, 8888888887888888888, 888888888878888888888, 88888888888788888888888, 8888888888887888888888888, 888888888888878888888888888, 88888888888888788888888888888, 8888888888888887888888888888888
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. (A077776-1)/2 = A183190: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002282 (8*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332117 .. A332197 (variants with different "wing" digit 1, ..., 9).
Cf. A332180 .. A332189 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332187 := n -> 8*(10^(2*n+1)-1)/9-10^n;
  • Mathematica
    Array[8 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{7,878,88788},20] (* Harvey P. Dale, Jul 21 2024 *)
  • PARI
    apply( {A332187(n)=10^(n*2+1)\9*8-10^n}, [0..15])
    
  • Python
    def A332187(n): return 10**(n*2+1)//9*8-10**n

Formula

a(n) = 8*A138148(n) + 7*10^n = A002282(2n+1) - 10^n.
G.f.: (7 + 101*x - 900*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A328284 An extension of the Jacobsthal numbers: 0, 0, 1, followed by A001045.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485
Offset: 0

Views

Author

Paul Curtz, Oct 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n>3, (2^(n-3) + (-1)^n)/3, If[n == 2, 1, 0]]; (* Jean-François Alcover, Oct 16 2019 *)

Formula

a(n) is the fourth row of the following array:
0, 0, 0, 0, 0, 1, 3, 7, 14, 27, 51, 97, ...
0, 0, 0, 0, 1, 2, 4, 7, 13, 24, 46, 89, ... = A086445
0, 0, 0, 1, 1, 2, 3, 6, 11, 22, 43, 86, ... = 0, 0, 0, A005578(n)
0, 0, 1, 0, 1, 1, 3, 5, 11, 21, 43, 85, ... = a(n)
0, 1, -1, 1, 0, 2, 2, 6, 10, 22, 42, 86, ...
1, -2, 2, -1, 2, 0, 4, 4, 12, 20, 44, 84, ...
From the main diagonal onward, every row is an autosequence of the first kind.
From Stefano Spezia, Oct 16 2019: (Start)
O.g.f.: x^2*(-1 + x + x^2)/(-1 + x + 2*x^2).
E.g.f.: (1/24)*exp(-x)*(8 - 9*exp(x) + exp(3*x) + 6*exp(x)*x + 6*exp(x)*x^2).
a(n) = a(n-1) + 2*a(n-2) for n > 4. (End)
a(n) = Sum_{k=0..n-1} A183190(n-k-2, n-2*k-2). - Jean-François Alcover, Nov 10 2019

Extensions

Partially edited by Peter Luschny, Nov 12 2019
Showing 1-2 of 2 results.