cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183300 Positive integers not of the form 2n^2.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Clark Kimberling, Jan 03 2011

Keywords

Comments

Complement of A001105.
Integers whose number of even divisors (A183063) is even (for a proof, see A001105, the complement of this sequence), hence odd numbers (A005408) are a subsequence. - Bernard Schott, Sep 15 2021

Examples

			10 is in the sequence since 2*2^2=8 < 10 < 2*3^2=18.
		

Crossrefs

Cf. A001105 (number of even divisors is odd), A028982 (number of odd divisors is odd), A028983 (number of odd divisors is even), this sequence (number of even divisors is even).

Programs

  • Magma
    [n: n in [0..100] | not IsSquare(n/2)]; // Bruno Berselli, Dec 17 2013
    
  • Maple
    A183300:=n->if type(sqrt(2*n)/2, integer) then NULL; else n; fi; seq(A183300(n), n=1..100); # Wesley Ivan Hurt, Dec 17 2013
  • Mathematica
    a = 2; b = 0;
    F[n_] := a*n^2 + b*n;
    R[n_] := (n/a + ((b - 1)/(2a))^2)^(1/2);
    G[n_] := n - 1 + Ceiling[R[n] - (b - 1)/(2a)];
    Table[F[n], {n, 60}]
    Table[G[n], {n, 100}] (* Clark Kimberling *)
    r[n_] := Reduce[n == 2*k^2, k, Integers]; Select[Range[100], r[#] === False &] (* Jean-François Alcover, Dec 17 2013 *)
    max = 100; Complement[Range[max], 2 Range[Ceiling[Sqrt[max/2]]]^2] (* Alonso del Arte, Dec 17 2013 *)
    Module[{nn=10,f},Complement[Range[2nn^2],2Range[nn]^2]] (* Harvey P. Dale, Sep 06 2023 *)
  • PARI
    is(n)=!issquare(n/2) \\ Charles R Greathouse IV, Sep 02 2015
    
  • PARI
    a(n)=my(k=sqrtint(n\2)+n); if(k-sqrtint(k\2)Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from math import isqrt
    def A183300(n): return n+(m:=isqrt(n>>1))+(n>(m+1)*((m<<1)+1)) # Chai Wah Wu, Aug 04 2025

Formula

a(n) = n + floor(sqrt(n/2) + 1/4). - Ridouane Oudra, Jan 26 2023
a(n) = n+m+1 if n>(m+1)*(2m+1) and a(n) = n+m otherwise where m = floor(sqrt(n/2)). - Chai Wah Wu, Aug 04 2025

Extensions

Name clarified by Wesley Ivan Hurt, Dec 17 2013