A183300 Positive integers not of the form 2n^2.
1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
Offset: 1
Examples
10 is in the sequence since 2*2^2=8 < 10 < 2*3^2=18.
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[n: n in [0..100] | not IsSquare(n/2)]; // Bruno Berselli, Dec 17 2013
-
Maple
A183300:=n->if type(sqrt(2*n)/2, integer) then NULL; else n; fi; seq(A183300(n), n=1..100); # Wesley Ivan Hurt, Dec 17 2013
-
Mathematica
a = 2; b = 0; F[n_] := a*n^2 + b*n; R[n_] := (n/a + ((b - 1)/(2a))^2)^(1/2); G[n_] := n - 1 + Ceiling[R[n] - (b - 1)/(2a)]; Table[F[n], {n, 60}] Table[G[n], {n, 100}] (* Clark Kimberling *) r[n_] := Reduce[n == 2*k^2, k, Integers]; Select[Range[100], r[#] === False &] (* Jean-François Alcover, Dec 17 2013 *) max = 100; Complement[Range[max], 2 Range[Ceiling[Sqrt[max/2]]]^2] (* Alonso del Arte, Dec 17 2013 *) Module[{nn=10,f},Complement[Range[2nn^2],2Range[nn]^2]] (* Harvey P. Dale, Sep 06 2023 *)
-
PARI
is(n)=!issquare(n/2) \\ Charles R Greathouse IV, Sep 02 2015
-
PARI
a(n)=my(k=sqrtint(n\2)+n); if(k-sqrtint(k\2)
Charles R Greathouse IV, Sep 02 2015 -
Python
from math import isqrt def A183300(n): return n+(m:=isqrt(n>>1))+(n>(m+1)*((m<<1)+1)) # Chai Wah Wu, Aug 04 2025
Formula
a(n) = n + floor(sqrt(n/2) + 1/4). - Ridouane Oudra, Jan 26 2023
a(n) = n+m+1 if n>(m+1)*(2m+1) and a(n) = n+m otherwise where m = floor(sqrt(n/2)). - Chai Wah Wu, Aug 04 2025
Extensions
Name clarified by Wesley Ivan Hurt, Dec 17 2013
Comments