cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A183893 Real part of a Gaussian integer sequence with a Gaussian integer Somos-4 Hankel transform.

Original entry on oeis.org

1, 1, -1, -1, 9, 9, -73, -73, 697, 697, -7161, -7161, 77457, 77457, -868881, -868881, 10016241, 10016241, -117935473, -117935473, 1412307481, 1412307481, -17148100569, -17148100569, 210619695913, 210619695913, -2612194773481, -2612194773481, 32668519882017, 32668519882017, -411515480555553
Offset: 0

Views

Author

Paul Barry, Jan 07 2011

Keywords

Comments

Hankel transform of A183893(n)+I*A183894(n) is the (-4,-4) Somos-4 Gaussian integer sequence A183895(n)+I*A183896(n).

Programs

  • Magma
    [Round(Real((&+[(Sqrt(-1))^k*Binomial(2*k,k)*Binomial( Floor((n+k)/2),k)/(k+1): k in [0..n]]))): n in [0..30]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    Table[Re[Sum[I^k*Binomial[2*k, k]*Binomial[Floor[(n + k)/2], k]/(k + 1), {k, 0, n}]], {n, 0, 50}] (* G. C. Greubel, Feb 21 2018 *)
  • PARI
    for(n=0,50, print1(real(sum(k=0,n, I^k*binomial(2*k,k)* binomial( floor((n+k)/2),k)/(k+1) )), ", ")) \\ G. C. Greubel, Feb 21 2018
    

Formula

a(n) = Re(Sum{k=0..n, C(floor((n+k)/2),k)*I^k*A000108(k)}), I=sqrt(-1).

A183894 Imaginary part of a Gaussian integer sequence with a Gaussian integer Somos-4 Hankel transform.

Original entry on oeis.org

0, 1, 1, -3, -3, 25, 25, -223, -223, 2217, 2217, -23427, -23427, 258417, 258417, -2941311, -2941311, 34289041, 34289041, -407344771, -407344771, 4913508489, 4913508489, -60018592735, -60018592735, 740910077497, 740910077497, -9228860168451, -9228860168451, 115849095339489, 115849095339489
Offset: 0

Views

Author

Paul Barry, Jan 07 2011

Keywords

Comments

Hankel transform of A183893(n)+I*A183894(n) is the (-4,-4) Somos-4 Gaussian integer sequence A183895(n)+I*A183896(n).

Programs

  • Magma
    [Round(Imaginary((&+[(Sqrt(-1))^k*Binomial(2*k,k)*Binomial( Floor((n+k)/2),k)/(k+1): k in [0..n]]))): n in [0..30]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    Table[Im[Sum[I^k*Binomial[2*k, k]*Binomial[Floor[(n + k)/2], k]/(k + 1), {k, 0, n}]], {n, 0, 50}] (* G. C. Greubel, Feb 21 2018 *)
  • PARI
    for(n=0,50, print1(imag(sum(k=0,n, I^k*binomial(2*k,k)* binomial( floor((n+k)/2),k)/(k+1) )), ", ")) \\ G. C. Greubel, Feb 21 2018
    

Formula

a(n) = Im(Sum{k=0..n, C(floor((n+k)/2),k)*I^k*A000108(k)}), I=sqrt(-1).

A183895 Real part of a (-4,-4) Gaussian integer Somos-4 sequence.

Original entry on oeis.org

1, -1, -2, 8, 32, -128, -1024, 16384, 262144, -4194304, -134217728, 8589934592, 549755813888, -35184372088832, -4503599627370496, 1152921504606846976, 295147905179352825856, -75557863725914323419136, -38685626227668133590597632, 39614081257132168796771975168, 40564819207303340847894502572032, -41538374868278621028243970633760768, -85070591730234615865843651857942052864, 348449143727040986586495598010130648530944
Offset: 0

Views

Author

Paul Barry, Jan 07 2011

Keywords

Comments

Real part of the Hankel transform of A183893(n) + i*A183894(n).
A183895(n) + i*A183896(n) is a (-4,-4) Gaussian integer Somos-4 sequence.
This is a generalized Somos-4 sequence. - Michael Somos, Mar 14 2020

Crossrefs

Programs

  • Magma
    [(-1)^Binomial(n+1,2)*2^Floor(n*(n+1)/4): n in [0..30]]; // G. C. Greubel, Feb 21 2018; Mar 18 2024
    
  • Mathematica
    Table[(-1)^Floor[(n+1)/2]*2^Floor[n*(n+1)/4], {n,0,30}] (* G. C. Greubel, Feb 21 2018; Mar 18 2024 *)
    a[ n_] := (-1)^(n + Quotient[n, 4])*(-2)^Quotient[n (n + 1), 4]; (* Michael Somos, Mar 14 2020 *)
  • PARI
    for(n=0,30, print1((-1)^((n+1)\2)*2^(n*(n+1)\4), ", ")) \\ G. C. Greubel, Feb 21 2018; Mar 18 2024
    
  • PARI
    {a(n) = (-1)^(n + n\4) * (-2)^(n*(n+1)\4)}; /* Michael Somos, Mar 14 2020 */
    
  • SageMath
    [(-1)^((n+1)//2)*2^(n*(n+1)//4) for n in range(31)] # G. C. Greubel, Mar 18 2024

Formula

a(n) = (sqrt(1/4 - sqrt(2)/8)*sin(7*Pi*n/4 + 3*Pi/8) + sqrt(sqrt(2)/8 + 1/4)*sin(5*Pi*n/4 + Pi/8) + sqrt(sqrt(2)/8 + 1/4)*cos(3*Pi*n/4 + 3*Pi/8) + sqrt(1/4 - sqrt(2)/8)*cos(Pi*n/4 + Pi/8))*(-2)^floor(binomial(n+1,2)/2).
From Michael Somos, Mar 14 2020: (Start)
a(n) = (-1)^(n + floor(n/4)) * A160637(n).
a(n) = a(-1-n) for all n in Z.
0 = a(n)*a(n+4) + 6*a(n+1)*a(n+3) + 4*a(n+2)^2 for all n in Z.
0 = a(n)*a(n+5) - 4*a(n+1)*a(n+4) for all n in Z. (End)
a(n) = (-1)^n * b(n+2), b() defined by 0 = b(n) * b(n+2) * b(n+3)^2 + b(n+4) * b(n+2) * b(n+1)^2 + b(n+1)^2 * b(n+3)^2, for n in N, all initial values +1. - Helmut Ruhland, Feb 22 2024
Showing 1-3 of 3 results.