cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A184018 Expansion of c(x/(1-x-x^2)) / (1-x-x^2), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 2, 6, 19, 67, 254, 1017, 4236, 18168, 79680, 355635, 1609912, 7373401, 34102976, 159055728, 747211753, 3532452169, 16792693562, 80224098381, 384948157635, 1854469572120, 8965866981294, 43488834409737, 211569299607282
Offset: 0

Views

Author

Paul Barry, Jan 08 2011

Keywords

Comments

Hankel transform is (9,-5) Somos-4 sequence A184019.
The radius of convergence r of the g.f. A(x) satisfies: r = (1-r-r^2)/4 = limit a(n)/a(n+1) = (sqrt(29)-5)/2 = 0.19258240... with A(r) = 1/(2*r) = (sqrt(29)+5)/4 = 2.59629120... - Paul D. Hanna, Sep 06 2011

Programs

  • Maple
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A037027 := proc(n,m) add( binomial(m+k,m)*binomial(k,n-k-m),k=0..n-m) ; end proc:
    A184018 := proc(n) add( A037027(n,k)*A000108(k),k=0..n) ; end proc:
    seq(A184018(n),n=0..10) ; # R. J. Mathar, Jan 11 2011
  • Mathematica
    CoefficientList[Series[(1 - x - x^2 - Sqrt[1 - 6 x + 3 x^2 + 6 x^3 + x^4])/(2 x (1 - x - x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
  • PARI
    {a(n)=polcoeff((1-sqrt(1-4*x/(1-x-x^2 +O(x^(n+2)))))/(2*x),n)} /* Paul D. Hanna, Sep 06 2011 */

Formula

G.f.: ( 1 - x - x^2 - sqrt((1 - x - x^2)*(1 - 5*x - x^2)) )/( 2*x*(1 - x - x^2) ).
G.f.: 1/(1 - x - x^2 - x/(1-x/(1 - x - x^2 - x/(1-x/(1 - x - x^2 - x/(1-x/(1 - x - x^2 - x/(1-x/(1-... (continued fraction).
a(n) = Sum_{k=0..n} (Sum_{j=0..n-k} binomial(k+j,k)*binomial(j,n-k-j))*A000108(k) = Sum_{k=0..n} A037027(n,k)*A000108(k).
G.f. satisfies A(x) = 1/(1-x-x^2) + x*A(x)^2. - Paul D. Hanna, Sep 06 2011
Conjecture: (n+1)*a(n) + 2*(1-3*n)*a(n-1) + 3*(n-1)*a(n-2) + 2*(3*n-5)*a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Nov 15 2011
a(n) ~ (27+5*sqrt(29)) * sqrt(54*sqrt(29)-290) * (5+sqrt(29))^n / (sqrt(Pi) * n^(3/2) * 2^(n+5)). - Vaclav Kotesovec, Feb 04 2014

A178628 A (1,1) Somos-4 sequence associated to the elliptic curve E: y^2 - x*y - y = x^3 + x^2 + x.

Original entry on oeis.org

1, 1, -1, -4, -3, 19, 67, -40, -1243, -4299, 25627, 334324, 627929, -29742841, -372632409, 1946165680, 128948361769, 1488182579081, -52394610324649, -2333568937567764, -5642424912729707, 3857844273728205019
Offset: 1

Views

Author

Paul Barry, May 31 2010

Keywords

Comments

a(n) is (-1)^C(n,2) times the Hankel transform of the sequence with g.f.
1/(1-x^2/(1-x^2/(1-4x^2/(1+(3/16)x^2/(1-(76/9)x^2/(1-(201/361)x^2/(1-... where
1,4,-3/16,76/9,201/361,... are the x-coordinates of the multiples of z=(0,0)
on E:y^2-xy-y=x^3+x^2+x.

Crossrefs

Programs

  • Magma
    I:=[1,1,-1,-4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018
    
  • Mathematica
    RecurrenceTable[{a[n] == (a[n-1]*a[n-3] +a[n-2]^2)/a[n-4], a[1] == 1, a[2] == 1, a[3] == -1, a[4] == -4}, a, {n,1,30}] (* G. C. Greubel, Sep 18 2018 *)
  • PARI
    a(n)=local(E,z);E=ellinit([ -1,1,-1,1,0]);z=ellpointtoz(E,[0,0]); round(ellsigma(E,n*z)/ellsigma(E,z)^(n^2))
    
  • PARI
    m=30; v=concat([1,1,-1,-4], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018
    
  • PARI
    {a(n) = subst(elldivpol(ellinit([-1, 1, -1, 1, 0]), n), x ,0)}; /* Michael Somos, Jul 05 2024 */
    
  • SageMath
    @CachedFunction
    def a(n): # a = A178628
        if n<5: return (0,1,1,-1,-4)[n]
        else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jul 05 2024

Formula

a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), n>4.
a(n) = -a(-n). a(n) = (-a(n-1)*a(n-4) +4*a(n-2)*a(n-3))/a(n-5) for all n in Z except n=5. - Michael Somos, Jul 05 2024

Extensions

Offset changed to 0. - Michael Somos, Jul 05 2024
Showing 1-2 of 2 results.