A184165 Number of independent (vertex) subsets in the rooted tree with Matula-Goebel number n.
2, 3, 5, 5, 8, 8, 9, 9, 13, 13, 13, 14, 14, 14, 21, 17, 14, 22, 17, 23, 23, 21, 22, 26, 34, 22, 35, 24, 23, 36, 21, 33, 34, 23, 37, 40, 26, 26, 36, 43, 22, 38, 24, 37, 57, 35, 36, 50, 41, 59, 37, 38, 33, 62, 55, 44, 43, 36, 23, 66, 40, 34, 61, 65, 58, 58, 26, 41, 57, 62, 43, 76, 38, 40, 93, 44, 60, 60, 37, 83
Offset: 1
Keywords
Examples
a(2)=3 because the tree with the Matula number 2 is the 1-edge tree AB with 3 independent subsets: (empty, {A}, {B}). a(2655237841)=3216386; the tree D[3] in Fig. 1 of the Ahmadi et al. reference has Merrifield-Simmons index 3216386 (see Table 1). The Matula-Goebel number of D[3] can be found to be 227^4=2655237841.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- M. B. Ahmadi and M. Seif, The Merrifield-Simmons index of an infinite class of dendrimers, Digest J. of Nanomaterials and Biostructures, 5, 2010, 335-338.
- É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quarterly, 20, 1982, 16-21.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Haskell
import Data.List (genericIndex) a184165 n = a228731 n + a228732 n a228731 n = genericIndex a228731_list (n - 1) a228732 n = genericIndex a228732_list (n - 1) (a228731_list, a228732_list) = unzip $ (1, 1) : map f [2..] where f x | i > 0 = (a228732 i, a228731 i + a228732 i) | otherwise = (a228731 u * a228731 v, a228732 u * a228732 v) where i = a049084 x u = a020639 x; v = x `div` u -- Reinhard Zumkeller, Sep 01 2013
-
Maple
with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [1, 1] elif bigomega(n) = 1 then [A(pi(n))[2], A(pi(n))[1]+A(pi(n))[2]] else [A(r(n))[1]*A(s(n))[1], A(r(n))[2]*A(s(n))[2]] end if end proc: a := proc (n) options operator, arrow: A(n)[1]+A(n)[2] end proc: seq(a(n), n = 1 .. 80);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; A[n_] := A[n] = If[n==1, {1, 1}, If[PrimeOmega[n]==1, {A[PrimePi[n]][[2]], A[PrimePi[n]] // Total}, A[r[n]] * A[s[n]]]]; a[n_] := A[n] // Total; a /@ Range[1, 80] (* Jean-François Alcover, Sep 20 2019, from Maple *)
-
PARI
R(n)={my(f=factor(n), g=f); for(i=1, #f~, my([b,c]=R(primepi(f[i,1]))); f[i,1]=c; g[i,1]=b+c); [factorback(f), factorback(g)]} a(n)=vecsum(R(n)); \\ Andrew Howroyd, Aug 01 2018
Formula
Define b(n) (c(n)) to be the number of independent subsets of the rooted tree with Matula-Goebel number n that contain (do not contain) the root. We have the following recurrence for the pair A(n)=[b(n),c(n)]. A(1)=[1,1]; if n=prime(t), then A(n)=[c(t),b(t)+c(t)]; if n=r*s (r,s,>=2), then A(n)=[b(r)*b(s), c(r)*c(s)]. Clearly, a(n)=b(n)+c(n). See the Czabarka et al. reference (p. 3315, (3)). The Maple program is based on this recursive formula.
Comments