cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184294 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..7 arrays.

Original entry on oeis.org

8, 36, 36, 176, 1072, 176, 1044, 43800, 43800, 1044, 6560, 2098720, 14913536, 2098720, 6560, 43800, 107377488, 5726645688, 5726645688, 107377488, 43800, 299600, 5726689312, 2345624810432, 17592189193216, 2345624810432, 5726689312, 299600
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Examples

			Table starts
       8         36           176           1044          6560      43800
      36       1072         43800        2098720     107377488 5726689312
     176      43800      14913536     5726645688 2345624810432
    1044    2098720    5726645688 17592189193216
    6560  107377488 2345624810432
   43800 5726689312
  299600
		

Crossrefs

Columns 1-3 are A054627, A184292, A184293.

Programs

  • Maple
    with(numtheory):
    T:= (n, k)-> add(add(phi(c)*phi(d)*8^(n*k/ilcm(c, d)),
                 c=divisors(n)), d=divisors(k))/(n*k):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..8);  # Alois P. Heinz, Aug 20 2017
  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*8^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n - k + 1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Alois P. Heinz *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 8^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 8^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017