cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A180305 G.f.: 1/(1 + x*d/dx log(eta(x))), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.

Original entry on oeis.org

1, 1, 4, 11, 34, 96, 288, 833, 2456, 7175, 21054, 61633, 180674, 529220, 1550800, 4543446, 13312552, 39004278, 114281748, 334837511, 981059294, 2874447292, 8421986238, 24675963950, 72299290794, 211833080161, 620659794584, 1818500391218, 5328110328116, 15611082044176, 45739647180588, 134014753120706, 392656158141832
Offset: 0

Views

Author

Paul D. Hanna, Jan 18 2011

Keywords

Comments

INVERT transform of sigma (A000203). - Alois P. Heinz, Feb 11 2021

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 11*x^3 + 34*x^4 + 96*x^5 + 288*x^6 +...
eta(x)^3/A(x) = 1 - 4*x + 10*x^3 - 21*x^6 + 39*x^10 - 66*x^15 + 104*x^21 +...+ A184363(n)*x^n +...
1 + x*d/dx log(eta(x)) = 1 - x - 3*x^2 - 4*x^3 - 7*x^4 - 6*x^5 - 12*x^6 - 8*x^7 - 15*x^8 +...+ -sigma(n)*x^n +...
		

Crossrefs

Row sums of A319083.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*numtheory[sigma](i), i=1..n))
        end:
    seq(a(n), n=0..36);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 06 2017 *)
  • PARI
    {a(n)=polcoeff(1/(1+x*deriv(log(eta(x+x*O(x^n))))), n)}
    
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n-1,sigma(n-k)*a(k)))}
    
  • PARI
    N=66; x='x+O('x^N); Vec(1/(1 - sum(k=1,N, x^k/(1-x^k)^2))) \\ Joerg Arndt, Mar 09 2014

Formula

a(n) = Sum_{k=0,n-1} sigma(n-k)*a(k) for n>0 with a(0) = 1.
G.f.: 1/(1 - sum(k>=1, x^k/(1-x^k)^2)). [Joerg Arndt, Mar 09 2014]
a(n) ~ c * d^n, where d = 2.92994725111235280869138453465150817383965264075630759525007993985560038385... is the root of the equation Sum_{k>=1} sigma(k)/d^k = 1 and c = 0.45133473613134383104139698267531812019856702278773719486399141396046228911... - Vaclav Kotesovec, Jul 28 2018

A184366 G.f.: eta(x)^3*(1 - x*eta'(x)/eta(x)), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.

Original entry on oeis.org

1, -2, 0, 0, 0, 0, 7, 0, 0, 0, -21, 0, 0, 0, 0, 44, 0, 0, 0, 0, 0, -78, 0, 0, 0, 0, 0, 0, 125, 0, 0, 0, 0, 0, 0, 0, -187, 0, 0, 0, 0, 0, 0, 0, 0, 266, 0, 0, 0, 0, 0, 0, 0, 0, 0, -364, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 483, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -625, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 792, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2011

Keywords

Examples

			G.f.: A(x) = 1 - 2*x + 7*x^6 - 21*x^10 + 44*x^15 - 78*x^21 +...
A(x) = eta(x)^3*[1 - x*d/dx log(eta(x))] where
eta(x)^3 = 1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 - 11*x^15 +...+ (-1)^n*(2n+1)*x^(n(n+1)/2) +...
1 - x*d/dx log(eta(x)) = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 15*x^8 +...+ sigma(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,-(-1)^m*(m-2)*(m+3)*(2*m+1)/6*x^(m*(m+1)/2)),n)}
    
  • PARI
    {a(n)=polcoeff(eta(x+x*O(x^n))^3*(1-x*deriv(log(eta(x+x*O(x^n))))),n)}

Formula

G.f.: A(x) = Sum_{n>=0} -(-1)^n * (n-2)(n+3)(2n+1)/6 * x^(n(n+1)/2).

A184362 G.f.: eta(x) + x*eta'(x).

Original entry on oeis.org

1, -2, -3, 0, 0, 6, 0, 8, 0, 0, 0, 0, -13, 0, 0, -16, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, -36, 0, 0, 0, 0, -41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 0, 0, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -71, 0, 0, 0, 0, 0, 0, -78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 93, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 18 2011

Keywords

Comments

The formulas specified in this entry use eta(x) to denote Dedekind's eta(q) function without the q^(1/24) factor.

Examples

			G.f.: A(x) = 1 - 2*x - 3*x^2 + 6*x^5 + 8*x^7 - 13*x^12 - 16*x^15 + 23*x^22 + 27*x^26 - 36*x^35 - 41*x^40 +...
Illustrate the property: [x^n] A(x)/eta(x)^(n+1) = 0
in the table of coefficients of A(x)/eta(x)^(n+1) for n=0..10:
[1, -1, -3, -4, -7, -6, -12, -8, -15, -13, -18,...,-sigma(n),...];
[1,(0), -2, -6, -15, -28, -55, -90, -154, -240, -378,...];
[1, 1,(0), -5, -20, -54, -130, -275, -555, -1050, -1924,...];
[1, 2, 3,(0), -17, -72, -221, -572, -1350, -2958, -6160,...];
[1, 3, 7, 10,(0), -63, -287, -930, -2580, -6475, -15162,...];
[1, 4, 12, 26, 38,(0), -253, -1196, -4059, -11780, -31027,...];
[1, 5, 18, 49, 105, 153,(0), -1062, -5175, -18140, -54544,...];
[1, 6, 25, 80, 210, 442, 646,(0), -4615, -22990, -82671,...];
[1, 7, 33, 120, 363, 924, 1926, 2816,(0), -20570, -104285,...];
[1, 8, 42, 170, 575, 1668, 4161, 8602, 12585,(0), -93538,...];
[1, 9, 52, 231, 858, 2756, 7766, 19071, 39182, 57343,(0),...]; ...
so that the coefficient of x^n in A(x)/eta(x)^(n+1) is zero for n>=1.
Note: the g.f.s of the diagonals in the above table are powers of G(x),
where G(x) = 1/eta(x*G(x)) is the g.f. of A109085.
The g.f. of A184363 equals:
A(x)*eta(x)^2 = 1 - 4*x + 10*x^3 - 21*x^6 + 39*x^10 - 66*x^15 +...+ (-1)^n*(2n+1)*(n^2+n+6)/6*x^(n(n+1)/2) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(eta(x+x*O(x^n)) + x*deriv(eta(x+x*O(x^n))),n)}

Formula

G.f. A(x) satisfies:
(1) [x^n] A(x)/eta(x)^(n+1) = 0 for n>=1.
(2) [x^n] A(x)/eta(x)^n = A109084(n) for n>=0.
(3) [x^n] A(x)/eta(x)^(n+2) = A109085(n) for n>=0.
(4) A(x)/eta(x) = 1 - Sum_{n>=1} sigma(n)*x^n.
(5) A(x) = 1 + Sum_{n>=1} (-1)^n*(n*(3*n-1)/2+1 + (n*(3*n+1)/2+1)*x^n) * x^(n*(3*n-1)/2).
(6) A(x)*eta(x)^2 = Sum_{n>=0} (-1)^n*(2n+1)*(n^2+n+6)/6*x^(n(n+1)/2).

Extensions

Example of g.f. corrected by Paul D. Hanna, Jan 18 2011
Name changed slightly by Paul D. Hanna, Nov 27 2012
Showing 1-3 of 3 results.