cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184390 a(n) = sum of numbers from 1 to pi(n), where pi(n) = A007955(n).

Original entry on oeis.org

1, 3, 6, 36, 15, 666, 28, 2080, 378, 5050, 66, 1493856, 91, 19306, 25425, 524800, 153, 17009028, 190, 32004000, 97461, 117370, 276, 55037822976, 7875, 228826, 266085, 240956128, 435, 328050405000
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Examples

			For n = 6; pi(6) = 36; a(n) = (1/2)*36*37 = 666.
		

Crossrefs

Programs

  • Mathematica
    # (#+1)/2&/@Array[Times@@Divisors[#]&,40] (* Harvey P. Dale, Oct 05 2012 *)
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A184390(n): return (m:=((isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2)))*(m+1)//2 # Chai Wah Wu, Jun 25 2022

Formula

a(n) = Sum_{i = 1..pi(n)} i = A000217(A007955(n)) = (1/2)*A007955(n)*(A007955(n)+1).