cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184533 a(n) = floor(1/{(2+n^3)^(1/3)}), where {}=fractional part.

Original entry on oeis.org

2, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

Column 2 of the array at A184532.

Crossrefs

Cf. A183532, A183534. Essenitally the same as A032528.

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^3+2)^(1/3)]; q[n_]:=Floor[1/p[n]]; Table[q[n],{n,1,120}]
    Join[{2},Table[(6*n^2 - (1-(-1)^n))/4,{n,2,50}]] (* or *) Join[{2}, LinearRecurrence[{2,0,-2,1},{6, 13, 24, 37},50]] (* G. C. Greubel, Feb 20 2017 *)
  • PARI
    a(n)=my(x=sqrtn(n^3+2,3));x-=n;1/x\1 \\ Charles R Greathouse IV, Aug 23 2011
    
  • PARI
    concat([2], for(n=2,25, print1((6*n^2 - (1-(-1)^n))/4, ", "))) \\ G. C. Greubel, Feb 20 2017

Formula

a(n) = floor(1/{(2+n^3)^(1/3)}), where {}=fractional part.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = (6*n^2 - (1-(-1)^n))/4 for n>1.
From Alexander R. Povolotsky, Aug 22 2011: (Start)
a(n+1) +a(n) = 3*n^2 + 3*n + 1.
G.f.: x*(-2 - 2*x - x^2 - 2*x^3 + x^4)/((-1 + x)^3*(1 + x)). (End)
a(n) = floor(1/((n^3+2)^(1/3)-n)). - Charles R Greathouse IV, Aug 23 2011
E.g.f.: (3*x*(x + 1)*cosh(x) + (3*x^2 + 3*x - 1)*sinh(x) + 2*x)/2. - Stefano Spezia, Apr 19 2025