A184533 a(n) = floor(1/{(2+n^3)^(1/3)}), where {}=fractional part.
2, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Mathematica
p[n_]:=FractionalPart[(n^3+2)^(1/3)]; q[n_]:=Floor[1/p[n]]; Table[q[n],{n,1,120}] Join[{2},Table[(6*n^2 - (1-(-1)^n))/4,{n,2,50}]] (* or *) Join[{2}, LinearRecurrence[{2,0,-2,1},{6, 13, 24, 37},50]] (* G. C. Greubel, Feb 20 2017 *)
-
PARI
a(n)=my(x=sqrtn(n^3+2,3));x-=n;1/x\1 \\ Charles R Greathouse IV, Aug 23 2011
-
PARI
concat([2], for(n=2,25, print1((6*n^2 - (1-(-1)^n))/4, ", "))) \\ G. C. Greubel, Feb 20 2017
Formula
a(n) = floor(1/{(2+n^3)^(1/3)}), where {}=fractional part.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = (6*n^2 - (1-(-1)^n))/4 for n>1.
From Alexander R. Povolotsky, Aug 22 2011: (Start)
a(n+1) +a(n) = 3*n^2 + 3*n + 1.
G.f.: x*(-2 - 2*x - x^2 - 2*x^3 + x^4)/((-1 + x)^3*(1 + x)). (End)
a(n) = floor(1/((n^3+2)^(1/3)-n)). - Charles R Greathouse IV, Aug 23 2011
E.g.f.: (3*x*(x + 1)*cosh(x) + (3*x^2 + 3*x - 1)*sinh(x) + 2*x)/2. - Stefano Spezia, Apr 19 2025
Comments