A184536 a(n) = floor(1/{(1+n^4)^(1/4)}), where {} = fractional part.
5, 32, 108, 256, 500, 864, 1372, 2048, 2916, 4000, 5324, 6912, 8788, 10976, 13500, 16384, 19652, 23328, 27436, 32000, 37044, 42592, 48668, 55296, 62500, 70304, 78732, 87808, 97556, 108000, 119164, 131072, 143748, 157216, 171500, 186624, 202612, 219488, 237276, 256000, 275684, 296352, 318028, 340736, 364500, 389344, 415292, 442368, 470596, 500000, 530604, 562432, 595508, 629856, 665500, 702464, 740772, 780448, 821516, 864000, 907924, 953312, 1000188
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
p[n_]:=FractionalPart[(n^4+1)^(1/4)]; q[n_]:=Floor[1/p[n]]; Table[q[n],{n,1,80}] LinearRecurrence[{4,-6,4,-1},{5,32,108,256,500},70] (* Harvey P. Dale, Dec 14 2023 *)
Formula
a(n) = floor[1/{(1+n^4)^(1/4)}], where {}=fractional part.
G.f.: x*(x^4-4*x^3+10*x^2+12*x+5)/(x-1)^4. - Colin Barker, Sep 21 2012
Comments