cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A184537 a(n) = floor(1/{(2+n^4)^(1/4)}), where {} = fractional part.

Original entry on oeis.org

5, 3, 16, 54, 128, 250, 432, 686, 1024, 1458, 2000, 2662, 3456, 4394, 5488, 6750, 8192, 9826, 11664, 13718, 16000, 18522, 21296, 24334, 27648, 31250, 35152, 39366, 43904, 48778, 54000, 59582, 65536, 71874, 78608, 85750, 93312, 101306, 109744, 118638, 128000, 137842, 148176, 159014, 170368, 182250, 194672, 207646, 221184, 235298, 250000, 265302, 281216, 297754, 314928, 332750, 351232, 370386, 390224, 410758, 432000, 453962, 476656
Offset: 0

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

Similar to A033431: replacing a(0) by 0 and a(1) by 2 gives A033431, see next comment.
From Bruno Berselli, Feb 04 2011: (Start)
For n >= 1, the value of (n^4+2)^(1/4) is just slightly above n, so the fractional part is (2+n^4)^(1/4)-n. For n > 1, then, 2*n^3 < 1/((2+n^4)^(1/4)-n) < 2*n^3+1.
The proof that 2*n^3*((2+n^4)^(1/4)-n) < 1 follows easily by isolating the quartic root and raising to the 4th power; similarly, 1 < (2*n^3+1)*((2+n^4)^(1/4)-n) needs a sign estimation of a 9th-order polynomial.
In conclusion, a(n)=A033431(n) for n > 1, with g.f. (34*x^2-12*x^3+x^4+x^5+5-17*x) / (x-1)^4. (End)

Crossrefs

Cf. A184536. Essentially the same as A033431.

Programs

  • Magma
    I:=[5, 3, 16, 54, 128,250]; [n le 6 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Jul 04 2012
  • Mathematica
    f[n_] := Floor[1/FractionalPart[(n^4 + 2)^(1/4)]]; Array[f, 40, 0]
    CoefficientList[Series[(34*x^2-12*x^3+x^4+x^5+5-17*x)/(x-1)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)
    LinearRecurrence[{4,-6,4,-1},{5,3,16,54,128,250},70] (* Harvey P. Dale, Apr 06 2018 *)

Formula

a(n) = floor( 1 / frac((2+n^4)^(1/4)) ).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 5.

A184628 Floor(1/frac((4+n^4)^(1/4))), where frac(x) is the fractional part of x.

Original entry on oeis.org

2, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 85184, 91125, 97336, 103823, 110592, 117649, 125000, 132651, 140608, 148877, 157464, 166375
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Comments

Is a(n) = A066023(n) for n>=2? R. J. Mathar, Jan 28 2011

Crossrefs

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+4)^(1/4)];
      q[n_]:=Floor[1/p[n]]; Table[q[n],{n,1,80}]
      FindLinearRecurrence[Table[q[n],{n,1,1000}]]
    Join[{2}, LinearRecurrence[{4, -6, 4, -1}, {8, 27, 64, 125}, 54]] (* Ray Chandler, Aug 01 2015 *)

Formula

a(n) = floor(1/{(4+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=4a(n-1)-6a(n-2)+4a(n-3)-a(n-4) for n>=6 and that a(n)=n^3 for n>=2.
Empirical g.f.: x*(x^4-4*x^3+7*x^2+2) / (x-1)^4. - Colin Barker, Sep 06 2014

A184629 Floor(1/{(5+n^4)^(1/4)}), where {}=fractional part.

Original entry on oeis.org

1, 7, 22, 51, 100, 173, 274, 409, 583, 800, 1064, 1382, 1757, 2195, 2700, 3276, 3930, 4665, 5487, 6400, 7408, 8518, 9733, 11059, 12500, 14060, 15746, 17561, 19511, 21600, 23832, 26214, 28749, 31443, 34300, 37324, 40522, 43897, 47455, 51200, 55136, 59270, 63605, 68147, 72900, 77868, 83058, 88473, 94119, 100000
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Cf. A184536.

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+5)^(1/4)]; q[n_]:=Floor[1/p[n]];
      Table[q[n], {n, 1, 80}]
      FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{1, 7, 22, 51, 100, 173}, LinearRecurrence[{3, -3, 1, 0, 1, -3, 3, -1}, {274, 409, 583, 800, 1064, 1382, 1757, 2195}, 44]] (* Ray Chandler, Aug 01 2015 *)

Formula

a(n)=floor(1/{(5+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-5)-3a(n-6)+3a(n-7)-a(n-8) for n>=15.

A184630 Floor(1/{(6+n^4)^(1/4)}), where {}=fractional part.

Original entry on oeis.org

1, 6, 18, 43, 83, 144, 228, 341, 486, 666, 887, 1152, 1464, 1829, 2250, 2730, 3275, 3888, 4572, 5333, 6174, 7098, 8111, 9216, 10416, 11717, 13122, 14634, 16259, 18000, 19860, 21845, 23958, 26202, 28583, 31104, 33768, 36581, 39546, 42666, 45947, 49392, 53004, 56789, 60750, 64890, 69215, 73728, 78432, 83333, 88434
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Cf. A184536.

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+6)^(1/4)]; q[n_]:=Floor[1/p[n]];
      Table[q[n], {n, 1, 80}]
      FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{1,6,18,43},LinearRecurrence[{3,-3,2,-3,3,-1},{83,144,228,341,486,666},47]] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n)=floor(1/{(6+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+2a(n-3)-3a(n-4)+3a(n-5)-a(n-6) for n>=11, which implies a(n) = (2*n^3-1+A049347(n))/3 for n>=5.

A184631 Floor(1/{(7+n^4)^(1/4)}), where {}=fractional part.

Original entry on oeis.org

1, 5, 15, 36, 71, 123, 196, 292, 416, 571, 760, 987, 1255, 1568, 1928, 2340, 2807, 3332, 3919, 4571, 5292, 6084, 6952, 7899, 8928, 10043, 11247, 12544, 13936, 15428, 17023, 18724, 20535, 22459, 24500, 26660, 28944, 31355, 33896, 36571, 39383, 42336, 45432, 48676, 52071, 55620, 59327, 63195, 67228, 71428, 75800
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Cf. A184536.

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+7)^(1/4)]; q[n_]:=Floor[1/p[n]];
      Table[q[n], {n, 1, 80}]
      FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{1,5},LinearRecurrence[{3,-3,1,0,0,0,1,-3,3,-1},{15,36,71,123,196,292,416,571,760,987},49]] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n)=floor(1/{(7+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-7)-3a(n-8)+3a(n-9)-a(n-10) for n>=13.

A184633 Floor(1/{(9+n^4)^(1/4)}), where {} = fractional part.

Original entry on oeis.org

1, 4, 12, 28, 55, 96, 152, 227, 324, 444, 591, 768, 976, 1219, 1500, 1820, 2183, 2592, 3048, 3555, 4116, 4732, 5407, 6144, 6944, 7811, 8748, 9756, 10839, 12000, 13240, 14563, 15972, 17468, 19055, 20736, 22512, 24387, 26364, 28444, 30631, 32928, 35336, 37859, 40500, 43260, 46143, 49152, 52288, 55555, 58956, 62492, 66167, 69984, 73944, 78051, 82308, 86716, 91279, 96000, 100880, 105923, 111132, 116508, 122055, 127776, 133672, 139747, 146004, 152444, 159071, 165888, 172896, 180099, 187500
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Cf. A184536.

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+9)^(1/4)]; q[n_]:=Floor[1/p[n]];
      Table[q[n], {n, 1, 80}]
      FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{1,4},LinearRecurrence[{3,-3,2,-3,3,-1},{12,28,55,96,152,227},73]] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    a(n)=my(t=(9+n^4)^(1/4)); 1\(t-t\1) \\ Charles R Greathouse IV, Sep 12 2014

Formula

a(n) = floor(1/{(9+n^4)^(1/4)}), where {} = fractional part.
It appears that a(n) = 3a(n-1)-3a(n-2)+2a(n-3)-3a(n-4)+3a(n-5)-a(n-6) for n>=9.
Empirical g.f.: x*(x+1)*(x^6-3*x^5+3*x^4-x^3+3*x^2+1) / ((x-1)^4*(x^2+x+1)). - Colin Barker, Jun 13 2015

A184634 a(n) = floor(1/{(10+n^4)^(1/4)}), where {}=fractional part.

Original entry on oeis.org

1, 3, 11, 25, 50, 86, 137, 204, 291, 400, 532, 691, 878, 1097, 1350, 1638, 1965, 2332, 2743, 3200, 3704, 4259, 4866, 5529, 6250, 7030, 7873, 8780, 9755, 10800, 11916, 13107, 14374, 15721, 17150, 18662, 20261, 21948, 23727, 25600, 27568, 29635, 31802, 34073, 36450, 38934, 41529, 44236, 47059, 50000, 53060, 56243, 59550, 62985, 66550, 70246, 74077, 78044, 82151, 86400, 90792, 95331, 100018, 104857, 109850, 114998, 120305, 125772, 131403, 137200
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Cf. A184536.

Programs

  • Maple
    f:= proc(n) local k, t;
      t:= n mod 5;
      k:= (n-t)/5;
      [50*k^3, 50*k^3 + 30*k^2 + 6*k,
    50*k^3 + 60*k^2 + 24*k + 3,
    50*k^3 + 90*k^2 + 54*k + 10,
    50*k^3 + 120*k^2 + 96*k + 25][t+1]
    end proc:
    f(1):= 1: f(3):= 11:
    map(f, [$1..100]); # Robert Israel, Feb 25 2019
  • Mathematica
    p[n_]:=FractionalPart[(n^4+10)^(1/4)];
    q[n_]:=Floor[1/p[n]];
    Table[q[n], {n, 1, 80}]
    FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{1,3,11},LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{25,50,86,137,204,291,400,532},67]] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    a(n)=1\frac(sqrtn(n^4+10,4)) \\ Charles R Greathouse IV, Feb 07 2016

Formula

a(n)=floor(1/{(10+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-5)-3a(n-6)+3a(n-7)-a(n-8).
From Robert Israel, Feb 25 2019: (Start)
2*n^3/5 + 3/(2*n) > 1/{(10+n^4)^(1/4)} > 2*n^3/5 for all n.
From this we can show that a(5*k) = 50*k^3 for k >= 1,
a(5*k+1) = 50*k^3 + 30*k^2 + 6*k for k >= 1,
a(5*k+2) = 50*k^3 + 60*k^2 + 24*k + 3,
a(5*k+3) = 50*k^3 + 90*k^2 + 54*k + 10 for k >= 1,
a(5*k+4) = 50*k^3 + 120*k^2 + 96*k + 25.
This implies the conjectured recurrence for n >= 12. (End)

A184635 a(n) = floor(1/{(n+n^4)^(1/4)}), where {} = fractional part.

Original entry on oeis.org

5, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+n)^(1/4)];
    q[n_]:=Floor[1/p[n]];
    Table[q[n], {n, 1, 80}]
    FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{5},LinearRecurrence[{3,-3,1},{16,36,64},45]] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = floor(1/{(n+n^4)^(1/4)}), where {} = fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3) for n>=5, and that a(n)=4*n^2 for n>=2.

A184636 a(n) = floor(1/{(n^4+2*n)^(1/4)}), where {}=fractional part.

Original entry on oeis.org

3, 8, 18, 32, 50, 72, 98, 128, 162, 200, 242, 288, 338, 392, 450, 512, 578, 648, 722, 800, 882, 968, 1058, 1152, 1250, 1352, 1458, 1568, 1682, 1800, 1922, 2048, 2178, 2312, 2450, 2592, 2738, 2888, 3042, 3200, 3362, 3528, 3698, 3872, 4050, 4232, 4418, 4608, 4802, 5000, 5202, 5408, 5618, 5832, 6050, 6272, 6498, 6728, 6962, 7200, 7442, 7688, 7938, 8192, 8450, 8712, 8978, 9248, 9522, 9800
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Comments

Is a(n) = A001105(n) for n>=2 ? R. J. Mathar, Jan 28 2011

Crossrefs

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+2*n)^(1/4)];
    q[n_]:=Floor[1/p[n]];
    Table[q[n], {n, 1, 80}]
    FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{3},LinearRecurrence[{3,-3,1},{8,18,32},69]] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n)=floor(1/{(n^4+2*n)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3) for n>=5, and that a(n)=2*n^2 for n>=2.

A184538 Floor[1/{(3+n^4)^(1/4)}], where {}=fractional part.

Original entry on oeis.org

2, 11, 36, 85, 166, 288, 457, 682, 972, 1333, 1774, 2304, 2929, 3658, 4500, 5461, 6550, 7776, 9145, 10666, 12348, 14197, 16222, 18432, 20833, 23434, 26244, 29269, 32518, 36000, 39721, 43690, 47916, 52405, 57166, 62208, 67537, 73162, 79092, 85333, 91894, 98784, 106009, 113578, 121500, 129781, 138430, 147456, 156865, 166666, 176868, 187477, 198502, 209952, 221833, 234154, 246924, 260149, 273838, 288000
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Crossrefs

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+3)^(1/4)];
    q[n_]:=Floor[1/p[n]];
    Table[q[n],{n,1,80}]

Formula

a(n)=floor[1/{(3+n^4)^(1/4)}], where {}=fractional part.
Recurrence relation appears to be a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
Empirical G.f.: x*(x+1)*(x^6-3*x^5+3*x^4+6*x^2+3*x+2)/((x-1)^4*(x^2+x+1)). [Colin Barker, Sep 21 2012]
Showing 1-10 of 11 results. Next