cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184537 a(n) = floor(1/{(2+n^4)^(1/4)}), where {} = fractional part.

Original entry on oeis.org

5, 3, 16, 54, 128, 250, 432, 686, 1024, 1458, 2000, 2662, 3456, 4394, 5488, 6750, 8192, 9826, 11664, 13718, 16000, 18522, 21296, 24334, 27648, 31250, 35152, 39366, 43904, 48778, 54000, 59582, 65536, 71874, 78608, 85750, 93312, 101306, 109744, 118638, 128000, 137842, 148176, 159014, 170368, 182250, 194672, 207646, 221184, 235298, 250000, 265302, 281216, 297754, 314928, 332750, 351232, 370386, 390224, 410758, 432000, 453962, 476656
Offset: 0

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

Similar to A033431: replacing a(0) by 0 and a(1) by 2 gives A033431, see next comment.
From Bruno Berselli, Feb 04 2011: (Start)
For n >= 1, the value of (n^4+2)^(1/4) is just slightly above n, so the fractional part is (2+n^4)^(1/4)-n. For n > 1, then, 2*n^3 < 1/((2+n^4)^(1/4)-n) < 2*n^3+1.
The proof that 2*n^3*((2+n^4)^(1/4)-n) < 1 follows easily by isolating the quartic root and raising to the 4th power; similarly, 1 < (2*n^3+1)*((2+n^4)^(1/4)-n) needs a sign estimation of a 9th-order polynomial.
In conclusion, a(n)=A033431(n) for n > 1, with g.f. (34*x^2-12*x^3+x^4+x^5+5-17*x) / (x-1)^4. (End)

Crossrefs

Cf. A184536. Essentially the same as A033431.

Programs

  • Magma
    I:=[5, 3, 16, 54, 128,250]; [n le 6 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Jul 04 2012
  • Mathematica
    f[n_] := Floor[1/FractionalPart[(n^4 + 2)^(1/4)]]; Array[f, 40, 0]
    CoefficientList[Series[(34*x^2-12*x^3+x^4+x^5+5-17*x)/(x-1)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)
    LinearRecurrence[{4,-6,4,-1},{5,3,16,54,128,250},70] (* Harvey P. Dale, Apr 06 2018 *)

Formula

a(n) = floor( 1 / frac((2+n^4)^(1/4)) ).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 5.