A184537 a(n) = floor(1/{(2+n^4)^(1/4)}), where {} = fractional part.
5, 3, 16, 54, 128, 250, 432, 686, 1024, 1458, 2000, 2662, 3456, 4394, 5488, 6750, 8192, 9826, 11664, 13718, 16000, 18522, 21296, 24334, 27648, 31250, 35152, 39366, 43904, 48778, 54000, 59582, 65536, 71874, 78608, 85750, 93312, 101306, 109744, 118638, 128000, 137842, 148176, 159014, 170368, 182250, 194672, 207646, 221184, 235298, 250000, 265302, 281216, 297754, 314928, 332750, 351232, 370386, 390224, 410758, 432000, 453962, 476656
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[5, 3, 16, 54, 128,250]; [n le 6 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Jul 04 2012
-
Mathematica
f[n_] := Floor[1/FractionalPart[(n^4 + 2)^(1/4)]]; Array[f, 40, 0] CoefficientList[Series[(34*x^2-12*x^3+x^4+x^5+5-17*x)/(x-1)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *) LinearRecurrence[{4,-6,4,-1},{5,3,16,54,128,250},70] (* Harvey P. Dale, Apr 06 2018 *)
Formula
a(n) = floor( 1 / frac((2+n^4)^(1/4)) ).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 5.
Comments