cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A184619 a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=1/3; complement of A184618.

Original entry on oeis.org

2, 6, 9, 12, 16, 19, 23, 26, 29, 33, 36, 40, 43, 46, 50, 53, 57, 60, 64, 67, 70, 74, 77, 81, 84, 87, 91, 94, 98, 101, 105, 108, 111, 115, 118, 122, 125, 128, 132, 135, 139, 142, 146, 149, 152, 156, 159, 163, 166, 169, 173, 176, 180, 183, 186, 190, 193, 197, 200, 204, 207, 210, 214, 217, 221, 224, 227
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Cf. A184618.

Programs

  • Magma
    [Floor(n*Sqrt(2)/(Sqrt(2) - 1) - Sqrt(2)/(3*Sqrt(2) - 3) + 1/3): n in [1..100]]; // G. C. Greubel, Apr 20 2018
  • Mathematica
    r=2^(1/2); h=1/3; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184618 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184619 *)
  • PARI
    for(n=1, 100, print1(floor(n*sqrt(2)/(sqrt(2)-1) - sqrt(2)/(3*sqrt(2) - 3) + 1/3), ", ")) \\ G. C. Greubel, Apr 20 2018
    

Formula

a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=1/3.

A184625 a(n) = floor((n-h)*s +h), where s=2+sqrt(2) and h=-1/4; complement of A184624.

Original entry on oeis.org

4, 7, 10, 14, 17, 21, 24, 27, 31, 34, 38, 41, 44, 48, 51, 55, 58, 62, 65, 68, 72, 75, 79, 82, 85, 89, 92, 96, 99, 103, 106, 109, 113, 116, 120, 123, 126, 130, 133, 137, 140, 144, 147, 150, 154, 157, 161, 164, 167, 171, 174, 178, 181, 184, 188, 191, 195, 198, 202, 205, 208, 212, 215, 219, 222, 225, 229
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*Sqrt(2)/(Sqrt(2) - 1) + Sqrt(2)/(4*Sqrt(2) - 4) - 1/4): n in [1..100]]; // G. C. Greubel, Apr 20 2018
  • Mathematica
    r=2^(1/2); h=-1/4; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184624 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184625 *)
  • PARI
    for(n=1, 100, print1(floor(n*sqrt(2)/(sqrt(2)-1) + sqrt(2)/(4*sqrt(2) - 4) - 1/4), ", ")) \\ G. C. Greubel, Apr 20 2018
    

Formula

a(n) = floor[(n-h)*s +h], where s=2+sqrt(2) and h=-1/4.

A184620 a(n) = floor(nr+h), where r=sqrt(2), h=1/4; complement of A184621.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 55, 56, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 109, 110, 111, 113, 114, 116, 117, 119, 120, 121, 123, 124, 126, 127, 128, 130, 131, 133, 134, 136, 137, 138, 140, 141, 143, 144, 145, 147, 148, 150, 151, 152, 154, 155, 157, 158, 160, 161, 162, 164, 165, 167, 168, 169
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*Sqrt(2) + 1/4): n in [1..120]]; // G. C. Greubel, Aug 18 2018
  • Mathematica
    r=2^(1/2); h=1/4; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184620 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184621 *)
  • PARI
    vector(120, n, floor(n*sqrt(2) + 1/4)) \\ G. C. Greubel, Aug 18 2018
    

Formula

a(n) = floor(n*r+h), where r=sqrt(2), h=1/4.

A184621 a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=1/4; complement of A184620.

Original entry on oeis.org

2, 6, 9, 13, 16, 19, 23, 26, 30, 33, 36, 40, 43, 47, 50, 54, 57, 60, 64, 67, 71, 74, 77, 81, 84, 88, 91, 94, 98, 101, 105, 108, 112, 115, 118, 122, 125, 129, 132, 135, 139, 142, 146, 149, 153, 156, 159, 163, 166, 170, 173, 176, 180, 183, 187, 190, 194, 197, 200, 204, 207, 211, 214, 217, 221, 224, 228, 231, 234, 238, 241, 245, 248, 252, 255, 258, 262, 265, 269, 272, 275, 279, 282, 286, 289, 293, 296, 299, 303, 306, 310, 313, 316, 320, 323, 327, 330, 333, 337, 340, 344, 347, 351, 354, 357, 361, 364, 368, 371, 374, 378, 381, 385, 388, 392, 395, 398, 402, 405, 409
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Magma
    [Floor((n-1/4)*(2+Sqrt(2)) +1/4): n in [1..120]]; // G. C. Greubel, Aug 18 2018
  • Mathematica
    r=2^(1/2); h=1/4; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184620 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184621 *)
  • PARI
    vector(120, n, floor((n-1/4)*(2+sqrt(2)) + 1/4)) \\ G. C. Greubel, Aug 18 2018
    

A184622 a(n) = floor(n*r+h), where r=sqrt(2), h=-1/3; complement of A184623.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 63, 64, 66, 67, 68, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, 97, 98, 100, 101, 102, 104, 105, 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 124, 125, 126, 128, 129, 131, 132, 134, 135, 136, 138, 139, 141, 142, 143, 145, 146, 148, 149, 150, 152, 153, 155, 156, 158, 159, 160, 162, 163, 165, 166, 167, 169
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*Sqrt(2) -1/3): n in [1..120]]; // G. C. Greubel, Aug 18 2018
  • Mathematica
    r=2^(1/2); h=-1/3; Table[ Floor[n*r+h],{n,1,120}]
  • PARI
    vector(120, n, floor(n*sqrt(2) - 1/3)) \\ G. C. Greubel, Aug 18 2018
    

Formula

a(n) = floor(n*r+h), where r=sqrt(2), h=-1/3.

A184623 a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=-1/3; complement of A184622.

Original entry on oeis.org

4, 7, 11, 14, 17, 21, 24, 28, 31, 34, 38, 41, 45, 48, 52, 55, 58, 62, 65, 69, 72, 75, 79, 82, 86, 89, 92, 96, 99, 103, 106, 110, 113, 116, 120, 123, 127, 130, 133, 137, 140, 144, 147, 151, 154, 157, 161, 164, 168, 171, 174, 178, 181, 185, 188, 192, 195, 198, 202, 205, 209, 212, 215, 219, 222, 226, 229, 232, 236, 239, 243, 246, 250, 253, 256, 260, 263, 267, 270, 273, 277, 280, 284, 287, 291, 294, 297, 301, 304, 308, 311, 314, 318, 321, 325, 328, 331, 335, 338, 342, 345, 349, 352, 355, 359, 362, 366, 369, 372, 376, 379, 383, 386, 390, 393, 396, 400
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Magma
    [Floor((n+1/3)*(2+Sqrt(2)) - 1/3): n in [1..120]]; // G. C. Greubel, Aug 18 2018
  • Mathematica
    r=2^(1/2); h=-1/3; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184622 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184623 *)
  • PARI
    vector(120, n, floor((n+1/3)*(2+sqrt(2)) - 1/3)) \\ G. C. Greubel, Aug 18 2018
    

Formula

a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=-1/3.

A184624 a(n) = floor(n*r +h), where r=sqrt(2), h=-1/4; complement of A184619.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 45, 46, 47, 49, 50, 52, 53, 54, 56, 57, 59, 60, 61, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 100, 101, 102, 104, 105, 107, 108
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*Sqrt(2) - 1/4): n in [1..100]]; // G. C. Greubel, Apr 20 2018
  • Mathematica
    r=2^(1/2); h=-1/4; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184624 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184625 *)
  • PARI
    for(n=1, 100, print1(floor(n*sqrt(2) - 1/4), ", ")) \\ G. C. Greubel, Apr 20 2018
    

A184626 floor(nr+h), where r=sqrt(3), h=1/4; complement of A184627.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 27, 29, 31, 33, 34, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 66, 67, 69, 71, 72, 74, 76, 78, 79, 81, 83, 85, 86, 88, 90, 92, 93, 95, 97, 98, 100, 102, 104, 105, 107, 109, 111, 112, 114, 116, 118, 119, 121, 123, 124, 126, 128, 130, 131, 133, 135, 137, 138, 140, 142, 144, 145, 147, 149, 150, 152, 154, 156, 157, 159, 161, 163, 164, 166, 168, 169, 171, 173, 175, 176, 178, 180, 182, 183, 185, 187, 189, 190, 192, 194, 195, 197, 199, 201, 202, 204, 206, 208
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Mathematica
    r=3^(1/2); h=1/4; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184626 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184627 *)

Formula

a(n)=floor(nr+h), where r=sqrt(3), h=1/4.

A184627 floor((n-h)*s+h), where s=(3+sqrt(3))/2 and h=1/4; complement of A184626.

Original entry on oeis.org

2, 4, 6, 9, 11, 13, 16, 18, 20, 23, 25, 28, 30, 32, 35, 37, 39, 42, 44, 46, 49, 51, 54, 56, 58, 61, 63, 65, 68, 70, 73, 75, 77, 80, 82, 84, 87, 89, 91, 94, 96, 99, 101, 103, 106, 108, 110, 113, 115, 117, 120, 122, 125, 127, 129, 132, 134, 136, 139, 141, 143, 146, 148, 151, 153, 155, 158, 160, 162, 165, 167, 170, 172, 174, 177, 179, 181, 184, 186, 188, 191, 193, 196, 198, 200, 203, 205, 207, 210, 212, 214, 217, 219, 222, 224, 226, 229, 231, 233, 236, 238, 240, 243, 245, 248, 250, 252, 255, 257, 259, 262, 264, 267, 269, 271, 274, 276, 278, 281, 283
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Mathematica
    r=3^(1/2); h=1/4; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184626 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184627 *)

Formula

a(n)=floor((n-h)*s+h), where s=(3+sqrt(3))/2 and h=1/4.
Showing 1-9 of 9 results.