A184825 a(n) = n + floor(n*t) + floor(n*t^2) + floor(n/t), where t is the tetranacci constant.
5, 13, 20, 27, 34, 42, 49, 56, 63, 71, 77, 85, 92, 99, 105, 113, 120, 127, 134, 142, 149, 156, 163, 171, 177, 185, 193, 199, 206, 213, 221, 227, 235, 242, 250, 256, 264, 271, 278, 285, 293, 299, 306, 313, 321, 327, 335, 342, 350, 356, 364, 371, 378, 386, 393, 400, 406, 414, 421, 428, 435, 443, 450, 457, 464, 472, 478, 486, 493, 500, 506, 514, 521, 528, 535, 543, 550, 557, 564, 572, 579, 586, 593, 600, 607, 614, 622, 628, 636, 643, 651, 657, 665, 672, 679, 686, 693, 700, 707, 714, 722, 728, 736, 743, 751, 757
Offset: 1
Keywords
Examples
Let t be the tetranacci constant, then t^3 = 1 + t + t^2 + 1/t and: t = 1.92756197548..., t^2 = 3.71549516932..., t^3 = 7.16184720848..., t^4 = 13.8049043532...
Programs
-
Mathematica
With[{t=x/.Last[Solve[x^4==Total[x^Range[0,3]],x]]},Table[n+Floor[n t]+Floor[n t^2]+Floor[n/t],{n,120}]] (* Harvey P. Dale, Feb 02 2011 *)
-
PARI
{a(n)=local(t=real(polroots(1+x+x^2+x^3-x^4)[2])); n+floor(n*t)+floor(n*t^2)+floor(n/t)}
Formula
Lim_{n->infinity} a(n)/n = t^3 = 7.1618472084864470579236869...
a(n) = n + floor(n*p/q) + floor(n*r/q) + floor(n*s/q), where p=t, q=t^2, r=t^3, s=t^4, and t is the tetranacci constant.
Comments