cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A184823 a(n) = n + floor(n/t) + floor(n/t^2) + floor(n/t^3), where t is the tetranacci constant.

Original entry on oeis.org

1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, 22, 23, 25, 28, 30, 31, 33, 35, 37, 38, 41, 43, 45, 46, 48, 51, 52, 55, 57, 59, 60, 62, 64, 66, 68, 70, 72, 74, 75, 78, 79, 82, 83, 86, 87, 89, 90, 93, 94, 97, 98, 101, 103, 104, 107, 108, 111, 112, 115, 116, 118, 119, 122, 124, 126, 128, 130, 131, 133, 135, 138, 139, 141, 143, 145, 146, 148, 151, 153, 155, 157, 159, 160, 162, 165, 167, 168, 170, 172, 174, 175, 178, 180, 182, 183, 186, 187, 189, 190, 194, 195, 197, 198, 201, 202, 204, 208, 209, 211, 212, 215, 216, 218, 220, 223, 224
Offset: 1

Views

Author

Paul D. Hanna, Jan 23 2011

Keywords

Comments

This is one of four sequences that partition the positive integers.
Given t is the tetranacci constant, then the following sequences are disjoint:
. A184823(n) = n + [n/t] + [n/t^2] + [n/t^3],
. A184824(n) = n + [n*t] + [n/t] + [n/t^2],
. A184825(n) = n + [n*t] + [n*t^2] + [n/t],
. A184826(n) = n + [n*t] + [n*t^2] + [n*t^3], where []=floor.
This is a special case of Clark Kimberling's results given in A184812.

Examples

			Let t be the tetranacci constant, then t = 1 + 1/t + 1/t^2 + 1/t^3 and:
t = 1.92756197548..., t^2 = 3.71549516932..., t^3 = 7.16184720848..., t^4 = 13.8049043532...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(t=real(polroots(1+x+x^2+x^3-x^4)[2])); n+floor(n/t)+floor(n/t^2)+floor(n/t^3)}

Formula

Limit a(n)/n = t = 1.9275619754829253042619058...
a(n) = n + floor(n*p/s) + floor(n*q/s) + floor(n*r/s), where p=t, q=t^2, r=t^3, s=t^4, and t is the tetranacci constant.

A184824 a(n) = n + floor(n*t) + floor(n/t) + floor(n/t^2), where t is the tetranacci constant.

Original entry on oeis.org

2, 6, 9, 14, 17, 21, 24, 29, 32, 36, 39, 44, 47, 50, 54, 58, 61, 65, 69, 73, 76, 80, 84, 88, 91, 95, 100, 102, 106, 110, 114, 117, 121, 125, 129, 132, 136, 140, 144, 147, 152, 154, 158, 161, 166, 169, 173, 176, 181, 184, 188, 191, 196, 200, 203, 207, 210, 214, 217, 222, 225, 229, 232, 237, 240, 244, 248, 252, 255, 258, 262, 266, 269, 273, 277, 281, 284, 288, 292, 296, 300, 304, 307, 310, 314, 318, 322, 325, 329, 333, 337, 340, 345, 348, 352, 355, 359, 362, 366, 369, 374, 377, 381, 384, 389, 392, 396, 401, 404, 408
Offset: 1

Views

Author

Paul D. Hanna, Jan 23 2011

Keywords

Comments

This is one of four sequences that partition the positive integers.
Given t is the tetranacci constant, then the following sequences are disjoint:
. A184823(n) = n + [n/t] + [n/t^2] + [n/t^3],
. A184824(n) = n + [n*t] + [n/t] + [n/t^2],
. A184825(n) = n + [n*t] + [n*t^2] + [n/t],
. A184826(n) = n + [n*t] + [n*t^2] + [n*t^3], where []=floor.
This is a special case of Clark Kimberling's results given in A184812.

Examples

			Let t be the tetranacci constant, then t^2 = 1 + t + 1/t + 1/t^2 and:
t = 1.92756197548..., t^2 = 3.71549516932..., t^3 = 7.16184720848..., t^4 = 13.8049043532...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(t=real(polroots(1+x+x^2+x^3-x^4)[2])); n+floor(n*t)+floor(n/t)+floor(n/t^2)}

Formula

Limit a(n)/n = t^2 = 3.7154951693276375317543272...
a(n) = n + floor(n*p/r) + floor(n*q/r) + floor(n*s/r), where p=t, q=t^2, r=t^3, s=t^4, and t is the tetranacci constant.

A184826 a(n) = n + floor(n*t) + floor(n*t^2) + floor(n*t^3) where t is the tetranacci constant.

Original entry on oeis.org

12, 26, 40, 53, 67, 81, 96, 109, 123, 137, 150, 164, 179, 192, 205, 219, 233, 246, 261, 275, 289, 302, 316, 330, 344, 358, 372, 385, 398, 412, 427, 440, 454, 468, 482, 495, 509, 524, 537, 551, 565, 578, 591, 606, 620, 633, 647, 661, 675, 689, 703, 717, 730, 744, 758, 772, 785, 799, 813, 826, 840, 855, 869, 882, 896, 910, 923, 938, 952, 965, 978, 992, 1006, 1019, 1034, 1048, 1062, 1075, 1089, 1103, 1117, 1131, 1144, 1158, 1171, 1185, 1200, 1213, 1227, 1241, 1255, 1268, 1283, 1297, 1310, 1324, 1337, 1351
Offset: 1

Views

Author

Paul D. Hanna, Jan 23 2011

Keywords

Comments

This is one of four sequences that partition the positive integers.
Given t is the tetranacci constant, then the following sequences are disjoint:
. A184823(n) = n + [n/t] + [n/t^2] + [n/t^3],
. A184824(n) = n + [n*t] + [n/t] + [n/t^2],
. A184825(n) = n + [n*t] + [n*t^2] + [n/t],
. A184826(n) = n + [n*t] + [n*t^2] + [n*t^3], where []=floor.
This is a special case of Clark Kimberling's results given in A184812.

Examples

			Let t be the tetranacci constant, then t^4 = 1 + t + t^2 + t^3 and:
t = 1.92756197548..., t^2 = 3.71549516932..., t^3 = 7.16184720848..., t^4 = 13.8049043532...
		

Crossrefs

Programs

  • Mathematica
    Module[{t=x/.FindRoot[x^4-x^3-x^2-x-1==0,{x,2},WorkingPrecision->200], t2,t3},t2=t^2;t3=t^3;Table[n+Floor[t*n]+Floor[t2*n]+Floor[t3*n], {n,100}]] (* Harvey P. Dale, Oct 18 2012 *)
  • PARI
    {a(n)=local(t=real(polroots(1+x+x^2+x^3-x^4)[2])); n+floor(n*t)+floor(n*t^2)+floor(n*t^3)}

Formula

Limit a(n)/n = t^4 = 13.804904353297009893939920...
a(n) = n + floor(n*q/p) + floor(n*r/p) + floor(n*s/p), where p=t, q=t^2, r=t^3, s=t^4, and t is the tetranacci constant.
Showing 1-3 of 3 results.