A184864 Numbers m such that prime(m) is of the form floor(n+nr-r/2), where r=(1+sqrt(5))/2; complement of A184861.
4, 7, 13, 14, 17, 19, 26, 27, 29, 31, 33, 36, 41, 47, 50, 56, 58, 60, 65, 67, 69, 74, 77, 78, 83, 84, 85, 87, 88, 91, 94, 95, 97, 100, 104, 106, 108, 110, 113, 114, 117, 119, 121, 123, 128, 129, 135, 138, 139, 142, 143, 145, 146, 148, 150, 152, 155, 160, 163, 166, 167, 169, 174, 176, 177, 180, 183, 186, 187, 190, 191, 195, 196, 198, 201, 203, 207, 209, 211, 216, 220, 221, 222, 224, 227, 228, 235, 239, 243, 244, 246, 247
Offset: 1
Keywords
Programs
-
Mathematica
r=(1+5^(1/2))/2; a[n_]:=Floor [n+n*r-r/2]; Table[a[n], {n, 1, 120}] (* A007064 *) t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3 *( Lists t1, t2, t3 match A184862, A184863, A184864.)
Comments