cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A184861 Numbers m such that prime(m) is of the form floor(nr+h), where r=(1+sqrt(5))/2 and h=1/2; complement of A184864.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 20, 21, 22, 23, 24, 25, 28, 30, 32, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 57, 59, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 82, 86, 89, 90, 92, 93, 96, 98, 99, 101, 102, 103, 105, 107, 109, 111, 112, 115, 116, 118, 120, 122, 124, 125, 126, 127, 130, 131, 132, 133, 134, 136, 137, 140, 141, 144, 147, 149, 151, 153, 154, 156, 157, 158, 159, 161, 162, 164
Offset: 1

Views

Author

Clark Kimberling, Jan 23 2011

Keywords

Examples

			See A184859.
		

Crossrefs

Programs

  • Mathematica
    r=(1+5^(1/2))/2; h=1/2; s=r/(r-1);
    a[n_]:=Floor [n*r+h];
    Table[a[n], {n, 1, 120}]  (* A007067 *)
    t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
    t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
    t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
    (* Lists t1, t2, t3 match A184859, A184860, A184861. *)

A184862 Primes of the form floor(n+nr-r/2), where r=(1+sqrt(5))/2.

Original entry on oeis.org

7, 17, 41, 43, 59, 67, 101, 103, 109, 127, 137, 151, 179, 211, 229, 263, 271, 281, 313, 331, 347, 373, 389, 397, 431, 433, 439, 449, 457, 467, 491, 499, 509, 541, 569, 577, 593, 601, 617, 619, 643, 653, 661, 677, 719, 727, 761, 787, 797, 821, 823, 829, 839, 857, 863, 881, 907, 941, 967, 983, 991, 1009, 1033, 1049, 1051, 1069, 1093, 1109, 1117, 1151, 1153, 1187, 1193, 1213, 1229, 1237, 1279, 1289, 1297, 1321, 1373, 1381, 1399, 1423, 1433, 1439, 1483, 1499, 1543, 1549, 1559, 1567
Offset: 1

Views

Author

Clark Kimberling, Jan 23 2011

Keywords

Comments

See "conjecture generalized" at A184774.

Crossrefs

Programs

  • Mathematica
    r=(1+5^(1/2))/2;
    a[n_]:=Floor [n+n*r-r/2];
    Table[a[n],{n,1,120}]  (* A007064 *)
    t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1
    t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2
    t3={}; Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,300}];t3
    *( Lists t1, t2, t3 match A184862, A184863, A184864.)
    With[{gr=GoldenRatio},Select[Table[Floor[n+n*gr-gr/2],{n,2000}],PrimeQ]] (* Harvey P. Dale, Sep 18 2024 *)

A184863 Numbers k such that floor(n+nr-r/2) are prime, where r=(1+sqrt(5))/2.

Original entry on oeis.org

3, 7, 16, 17, 23, 26, 39, 40, 42, 49, 53, 58, 69, 81, 88, 101, 104, 108, 120, 127, 133, 143, 149, 152, 165, 166, 168, 172, 175, 179, 188, 191, 195, 207, 218, 221, 227, 230, 236, 237, 246, 250, 253, 259, 275, 278, 291, 301, 305, 314, 315, 317, 321, 328, 330, 337, 347, 360, 370, 376, 379, 386, 395, 401, 402, 409, 418, 424, 427, 440, 441, 454, 456, 464, 470, 473, 489, 493, 496, 505, 525, 528, 535, 544, 548, 550, 567, 573, 590, 592, 596, 599
Offset: 1

Views

Author

Clark Kimberling, Jan 23 2011

Keywords

Crossrefs

Programs

  • Mathematica
    r=(1+5^(1/2))/2;
    a[n_]:=Floor [n+n*r-r/2];
    Table[a[n], {n, 1, 120}]  (* A007064 *)
    t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
    t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
    t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
    *( Lists t1, t2, t3 match A184862, A184863, A184864.)
    With[{gr=GoldenRatio},Select[Range[600],PrimeQ[Floor[#+gr*#-gr/2]]&]] (* Harvey P. Dale, Jul 06 2025 *)
Showing 1-3 of 3 results.