cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184884 Diagonal sums of number triangle A184883.

Original entry on oeis.org

1, 1, 2, 6, 11, 27, 60, 132, 301, 669, 1502, 3370, 7543, 16919, 37912, 84968, 190457, 426841, 956698, 2144238, 4805827, 10771315, 24141588, 54108332, 121272549, 271806901, 609198390, 1365390546, 3060236911, 6858880431, 15372743856, 34454786384, 77223188593, 173079605553, 387921692082, 869445237846
Offset: 0

Views

Author

Paul Barry, Jan 24 2011

Keywords

Crossrefs

Cf. A183883.

Programs

  • Magma
    A184883:= func< n,k | (&+[Binomial(k,j)*Binomial(2*(n-k), j)*2^j: j in [0..k]]) >;
    A184884:= func< n | (&+[A184883(n, j): j in [0..Floor(n/2)]]) >;
    [A184884(n): n in [0..40]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    LinearRecurrence[{1,2,2,-1,1}, {1,1,2,6,11}, 45] (* G. C. Greubel, Nov 19 2021 *)
  • Sage
    def A184883(n,k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) )
    def A184884(n): return sum( A184883(n, j) for j in (0..n//2) )
    [A184884(n) for n in (0..40)] # G. C. Greubel, Nov 19 2021

Formula

G.f.: (1-x^2)/(1-x-2*x^2-2*x^3+x^4-x^5).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..k} C(2*n-4*k,j)*C(k,j)*2^j.
a(n) = Sum_{k=0..floor(n/2)} Hypergeometric2F1([-k, 2*(k-n)], [1], 2). - G. C. Greubel, Nov 19 2021