A006821
Number of connected regular graphs of degree 5 (or quintic graphs) with 2n nodes.
Original entry on oeis.org
1, 0, 0, 1, 3, 60, 7848, 3459383, 2585136675, 2807105250897, 4221456117363365, 8516994770090547979, 22470883218081146186209, 75883288444204588922998674, 322040154704144697047052726990
Offset: 0
a(0)=1 because the null graph (with no vertices) is vacuously 5-regular and connected.
- CRC Handbook of Combinatorial Designs, 1996, p. 648.
- I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Leonard Chidiebere Eze, Robert Jajcay, and Jorik Jooken, On (k,g)-Graphs without (g+1)-Cycles, arXiv:2411.19023 [math.CO], 2024. See p. 18.
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
- Denis S. Krotov, [[2,10],[6,6]]-equitable partitions of the 12-cube, arXiv:2012.00038 [math.CO], 2020.
- Markus Meringer, Tables of Regular Graphs
- Markus Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146. [_Jason Kimberley_, Nov 24 2009]
- Eric Weisstein's World of Mathematics, Quintic Graph
- Eric Weisstein's World of Mathematics, Regular Graph
5-regular simple graphs: this sequence (connected),
A165655 (disconnected),
A165626 (not necessarily connected).
Connected regular simple graphs
A005177 (any degree),
A068934 (triangular array), specified degree k:
A002851 (k=3),
A006820 (k=4), this sequence (k=5),
A006822 (k=6),
A014377 (k=7),
A014378 (k=8),
A014381 (k=9),
A014382 (k=10),
A014384 (k=11).
Connected 5-regular simple graphs with girth at least g: this sequence (g=3),
A058275 (g=4),
A205295 (g=5).
Connected 5-regular graphs:
A129430 (loops and multiple edges allowed),
A129419 (no loops but multiple edges allowed), this sequence (no loops nor multiple edges). (End)
By running M. Meringer's GENREG for about 2 processor years at U. Newcastle, a(9) was found by
Jason Kimberley, Nov 24 2009
A058275
Number of connected 5-regular simple graphs on 2*n vertices with girth at least 4.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 7, 388, 406824, 1125022325, 3813549359274
Offset: 0
- M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146. - Jason Kimberley, Jan 30 2011
5-regular simple graphs on 2n vertices with girth at least 4: this sequence (connected),
A185254 (disconnected),
A185354 (not necessarily connected).
Connected 5-regular simple graphs with girth at least g:
A006821 (g=3), this sequence (g=4),
A205295 (g=5).
Connected 5-regular simple graphs with girth exactly g:
A184953 (g=3),
A184954 (g=4),
A184955 (g=5). (End)
Terms a(10) and a(11) appended, from running Meringer's GENREG for 3.8 and 7886 processor days at U. Ncle., by
Jason Kimberley on Jun 28 2010
A006925
Number of connected trivalent graphs with 2n nodes and girth exactly 5.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 8, 48, 450, 5751, 90553, 1612905, 31297357, 652159389, 14499780660, 342646718608
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 647.
- Gordon Royle, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Connected k-regular simple graphs with girth exactly 5: this sequence (k=3),
A184945 (k=4),
A184955 (k=5).
Connected 3-regular simple graphs with girth exactly g:
A198303 (triangle); specified g:
A006923 (g=3),
A006924 (g=4), this sequence
Definition corrected to include "connected", and "girth at least 5" minus "girth at least 6" formula provided by
Jason Kimberley, Dec 12 2009
A184945
Number of connected 4-regular simple graphs on n vertices with girth exactly 5.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 8, 131, 3917, 123859, 4131991, 132160607, 4018022149, 118369811959
Offset: 0
a(0)=0 because even though the null graph (on zero vertices) is vacuously 4-regular and connected, since it is acyclic, it has infinite girth.
The a(19)=1 graph is the unique (4,5) cage: the Robertson graph (see also A159191). It has the following adjacency lists.
01 : 02 03 04 05
02 : 01 06 07 08
03 : 01 09 10 11
04 : 01 12 13 14
05 : 01 15 16 17
06 : 02 09 12 15
07 : 02 10 13 16
08 : 02 11 14 17
09 : 03 06 13 17
10 : 03 07 14 18
11 : 03 08 16 19
12 : 04 06 16 18
13 : 04 07 09 19
14 : 04 08 10 15
15 : 05 06 14 19
16 : 05 07 11 12
17 : 05 08 09 18
18 : 10 12 17 19
19 : 11 13 15 18
4-regular simple graphs with girth exactly 5: this sequence (connected),
A185045 (disconnected),
A185145 (not necessarily connected).
Connected k-regular simple graphs with girth exactly 5:
A006925 (k=3), this sequence (k=4),
A184955 (k=5).
Connected 4-regular simple graphs with girth exactly g:
A184943 (g=3),
A184944 (g=4), this sequence (g=5).
A184953
Number of connected 5-regular (or quintic) simple graphs on 2n vertices with girth exactly 3.
Original entry on oeis.org
0, 0, 0, 1, 3, 59, 7847, 3459376, 2585136287, 2807104844073
Offset: 0
Connected 5-regular simple graphs with girth at least g:
A006821 (g=3),
A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g: this sequence (g=3),
A184954 (g=4),
A184955 (g=5).
A184954
Number of connected 5-regular simple graphs on 2n vertices with girth exactly 4.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 7, 388, 406824, 1125022325, 3813549359274
Offset: 0
Connected 5-regular simple graphs with girth at least g:
A006821 (g=3),
A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g:
A184953 (g=3), this sequence (g=4),
A184955 (g=5).
A205295
Number of connected 5-regular simple graphs on 2n vertices with girth at least 5.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 90
Offset: 0
- M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.
Connected k-regular simple graphs with girth at least 5:
A185115 (k=2),
A014372 (k=3),
A058343 (k=4), this sequence (k=5).
Connected 5-regular simple graphs with girth at least g:
A006821 (g=3),
A058275 (g=4), this sequence (g=5).
A184950
Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 3, 59, 1, 7847, 1, 3459376, 7, 2585136287, 388, 2807104844073, 406824
Offset: 3
1;
3;
59, 1;
7847, 1;
3459376, 7;
2585136287, 388;
2807104844073, 406824;
?, 1125022325;
?, 3813549359274;
Connected 5-regular simple graphs with girth at least g:
A184951 (triangle); chosen g:
A006821 (g=3),
A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184953 (g=3),
A184954 (g=4),
A184955 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4), this sequence (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A184951
Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth at least g.
Original entry on oeis.org
1, 3, 60, 1, 7848, 1, 3459383, 7, 2585136675, 388, 2807105250897, 406824
Offset: 3
1;
3;
60, 1;
7848, 1;
3459383, 7;
2585136675, 388;
2807105250897, 406824;
Connected 5-regular simple graphs with girth at least g: this sequence (triangle); chosen g:
A006821 (g=3),
A058275 (g=4),
A205295 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g:
A185131 (k=3),
A184941 (k=4), this sequence (k=5),
A184961 (k=6),
A184971 (k=7),
A184981 (k=8).
Showing 1-9 of 9 results.
Comments