A184977 a(n) = Sum_{k=1..n} floor(k*gamma) where gamma is Euler's constant (A001620).
0, 1, 2, 4, 6, 9, 13, 17, 22, 27, 33, 39, 46, 54, 62, 71, 80, 90, 100, 111, 123, 135, 148, 161, 175, 190, 205, 221, 237, 254, 271, 289, 308, 327, 347, 367, 388, 409, 431, 454, 477, 501, 525, 550, 575, 601, 628, 655, 683, 711, 740, 770, 800, 831, 862, 894, 926, 959, 993, 1027, 1062
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
R:=RealField(100); [(&+[Floor(k*EulerGamma(R)): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Aug 27 2018
-
Maple
with(numtheory):Digits:=500:s:=0:c:=evalf(gamma(0)):for n from 1 to 100 do: s:=s+floor(n*c):printf(`%d, `,s):od:
-
Mathematica
Table[Sum[Floor[k*EulerGamma], {k, 1, n}], {n, 50}] (* G. C. Greubel, Jun 02 2017 *)
-
PARI
a(n) = sum(k=1, n, floor(k*Euler)); \\ Michel Marcus, Apr 02 2017
Formula
Partial sums of A038128.
Extensions
Name edited by Jon E. Schoenfield, Apr 02 2017
Comments