A184995 Irregular triangle T, read by rows, in which row n lists the primes p <= n such that 2n-p is also prime.
2, 3, 3, 3, 5, 5, 3, 7, 3, 5, 5, 7, 3, 7, 3, 5, 11, 5, 7, 11, 3, 7, 13, 5, 11, 7, 11, 13, 3, 13, 3, 5, 11, 17, 5, 7, 13, 17, 7, 19, 3, 11, 17, 5, 11, 13, 19, 3, 7, 13, 3, 5, 17, 23, 5, 7, 11, 17, 19, 3, 7, 13, 19, 5, 11, 23, 7, 11, 13, 17, 23, 3, 13, 19, 5, 11, 17, 29, 7, 13, 17, 19, 23, 29
Offset: 2
Examples
The irregular triangle T(n, i) starts: n, 2*n\i 1 2 3 4 5 6 ... 2, 4 2 3, 6 3 4, 8 3 5, 10 3 5 6, 12 5 7, 14 3 7 8, 16 3 5 9, 18 5 7 10, 20 3 7 11, 22 3 5 11 12, 24 5 7 11 13, 26 3 7 13 14, 28 5 11 15, 30 7 11 13 16, 32 3 13 17, 34 3 5 11 17 18, 36 5 7 13 17 19, 38 7 19 20, 40 3 11 17 21, 42 5 11 13 19 22, 44 3 7 13 23, 46 3 5 17 23 24, 48 5 7 11 17 19 25, 50 3 7 13 19 26, 52 5 11 23 27, 54 7 11 13 17 23 28, 56 3 13 19 29, 58 5 11 17 29 30, 60 7 13 17 19 23 29 ... reformatted - _Wolfdieter Lang_, May 14 2016
Links
- Jason Kimberley, Table of n, a(n) for n = 2..1000 (flattened 2..26552)
- OEIS (Plot 2), Plot of (n,p)
- Index entries for sequences related to Goldbach conjecture
Crossrefs
Programs
-
Magma
A184995 := func
; &cat[A184995(n):n in [2..30]]; -
Maple
T:= n-> seq(`if`(andmap(isprime, [p, 2*n-p]), p, NULL), p=2..n): seq(T(n), n=2..40); # Alois P. Heinz, Jan 09 2025
-
Mathematica
Table[Select[Prime@ Range@ PrimePi@ n, PrimeQ[2 n - #] &], {n, 2, 30}] // Flatten (* Michael De Vlieger, May 14 2016 *) T[n_] := Table[If[PrimeQ[p] && PrimeQ[2n-p], p, Nothing], {p, 2, n}]; Table[T[n], {n, 2, 30}] // Flatten (* Jean-François Alcover, Jan 09 2025, after Alois P. Heinz in A182138 *)
Formula
T(n,i) = n - A182138(n,i). - Jason Kimberley, Sep 25 2012
Comments