cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185003 a(n) = Sum_{k=1..n} binomial(n,k)*sigma(k).

Original entry on oeis.org

1, 5, 16, 45, 116, 284, 673, 1557, 3535, 7910, 17502, 38376, 83500, 180479, 387881, 829605, 1766998, 3749765, 7931114, 16724870, 35173777, 73794660, 154485527, 322771344, 673155141, 1401536934, 2913490375, 6047714599, 12536770558, 25956242579, 53678385266
Offset: 1

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 16*x^3/3 + 45*x^4/4 + 116*x^5/5 + 284*x^6/6 +...
where exponentiation yields A103446 (with offset=0):
exp(L(x)) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +...
		

Crossrefs

Programs

  • Magma
    [&+[Binomial(n,k)*DivisorSigma(1,k):k in [1..n]]:n in [1..31]]; // Marius A. Burtea, Nov 12 2019
    
  • Magma
    [&+[&+[i*Binomial(n,i*j):j in [1..n]]:i in [1..n]]:n in [1..31]]; // Marius A. Burtea, Nov 12 2019
  • Maple
    with(numtheory): seq(add(binomial(n,i)*sigma(i), i=1..n), n=1..40); # Ridouane Oudra, Nov 12 2019
  • Mathematica
    Table[Sum[Binomial[n, k] DivisorSigma[1, k], {k, n}], {n,50}] (* G. C. Greubel, Jun 03 2017 *)
  • PARI
    {a(n)=sum(k=1,n,sigma(k)*binomial(n,k))}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n*polcoeff(sum(m=1, n+1, x^m/((1-x)^m-X^m)/m), n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n*polcoeff(sum(k=1, n, k*log(1-X)-log((1-x)^k-X^k)), n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n*polcoeff(sum(m=1, n+1, sigma(m)*x^m/(1-X)^m/m), n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n*polcoeff(sum(k=1, n, valuation(2*k, 2)*log(1 + x^k/(1-X)^k)), n)}
    

Formula

Logarithmic derivative of A103446 (with offset=0), which describes the binomial transform of partitions.
From Paul D. Hanna, Jun 01 2013: (Start)
L.g.f.: Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n.
L.g.f.: Sum_{n>=1} x^n/((1-x)^n - x^n) / n.
L.g.f.: Sum_{n>=1} n*log(1-x) - log((1-x)^n - x^n).
L.g.f.: Sum_{n>=1} A001511(n) * log(1 + x^n/(1-x)^n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
a(n) = A222115(n) - 1. (End)
a(n) ~ Pi^2/12 * n * 2^n. - Vaclav Kotesovec, Dec 30 2015
a(n) = Sum_{i=1..n} Sum_{j=1..n} i*binomial(n,i*j). - Ridouane Oudra, Nov 12 2019