A185027 Sum of the triangular divisors of n.
1, 1, 4, 1, 1, 10, 1, 1, 4, 11, 1, 10, 1, 1, 19, 1, 1, 10, 1, 11, 25, 1, 1, 10, 1, 1, 4, 29, 1, 35, 1, 1, 4, 1, 1, 46, 1, 1, 4, 11, 1, 31, 1, 1, 64, 1, 1, 10, 1, 11, 4, 1, 1, 10, 56, 29, 4, 1, 1, 35, 1, 1, 25, 1, 1, 76, 1, 1, 4, 11, 1, 46, 1, 1, 19, 1, 1, 88, 1
Offset: 1
Examples
a(15) = 19 because 1+3+15 = 19 (1, 3 and 15 are the triangular divisors of 15).
Links
- Antonio Roldán, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := DivisorSum[n, # &, IntegerQ[Sqrt[8*#+1]] &]; Array[a, 100] (* Amiram Eldar, Aug 12 2023 *)
-
PARI
istriang(x)=issquare(8*x+1) a(n)={my(m=0);for(i=1,n,if(istriang(i)&&n/i==n\i,m+=i));return(m)} {for(n=1,10^4,k=sumdivtriang(n);write("b185027.txt",n," ",k))}
-
PARI
a(n)=sumdiv(n, d, ispolygonal(d, 3)*d) \\ Charles R Greathouse IV, Jan 14 2013
Formula
G.f.: Sum_{k>=1} (k*(k + 1)/2)*x^(k*(k+1)/2)/(1 - x^(k*(k+1)/2)). - Ilya Gutkovskiy, Dec 24 2016