cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185027 Sum of the triangular divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 1, 10, 1, 1, 4, 11, 1, 10, 1, 1, 19, 1, 1, 10, 1, 11, 25, 1, 1, 10, 1, 1, 4, 29, 1, 35, 1, 1, 4, 1, 1, 46, 1, 1, 4, 11, 1, 31, 1, 1, 64, 1, 1, 10, 1, 11, 4, 1, 1, 10, 56, 29, 4, 1, 1, 35, 1, 1, 25, 1, 1, 76, 1, 1, 4, 11, 1, 46, 1, 1, 19, 1, 1, 88, 1
Offset: 1

Views

Author

Antonio Roldán, Jan 14 2013

Keywords

Examples

			a(15) = 19 because 1+3+15 = 19 (1, 3 and 15 are the triangular divisors of 15).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, IntegerQ[Sqrt[8*#+1]] &]; Array[a, 100] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    istriang(x)=issquare(8*x+1)
    a(n)={my(m=0);for(i=1,n,if(istriang(i)&&n/i==n\i,m+=i));return(m)}
    {for(n=1,10^4,k=sumdivtriang(n);write("b185027.txt",n," ",k))}
    
  • PARI
    a(n)=sumdiv(n, d, ispolygonal(d, 3)*d) \\ Charles R Greathouse IV, Jan 14 2013

Formula

G.f.: Sum_{k>=1} (k*(k + 1)/2)*x^(k*(k+1)/2)/(1 - x^(k*(k+1)/2)). - Ilya Gutkovskiy, Dec 24 2016