cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A209309 Numbers whose sum of triangular divisors is also triangular and greater than 1.

Original entry on oeis.org

6, 12, 18, 24, 48, 54, 96, 102, 110, 114, 138, 162, 174, 186, 192, 204, 220, 222, 228, 246, 258, 282, 315, 318, 348, 354, 364, 366, 372, 384, 402, 414, 426, 438, 440, 444, 456, 474, 486, 492, 498, 516, 522, 534, 550, 558, 564, 582, 606, 618, 636, 642, 654, 678
Offset: 1

Views

Author

Antonio Roldán, Jan 18 2013

Keywords

Examples

			186 is a term because the sum of its triangular divisors, 1+3+6 = 10 is also triangular.
		

Crossrefs

Programs

  • Mathematica
    triQ[n_] := n > 1 && IntegerQ[Sqrt[8*n+1]]; q[n_] := triQ[1 + DivisorSum[n, #&, triQ[#] &]]; Select[Range[700], q] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    istriangular(n)=issquare(8*n+1)
    {t=0; for(n=1, 10^5, k=sumdiv(n, d, istriangular(d)*d); if(istriangular(k)&&k>>1, t+=1; write("b209309.txt",t," ",n)))}

A209310 Triangular numbers whose sum of triangular divisors is also triangular and greater than 1.

Original entry on oeis.org

6, 4186, 32131, 52975, 78210, 111628, 237016, 247456, 584821, 750925, 1464616, 3649051, 5791906, 11297881, 16082956, 24650731, 27243271, 38618866, 46585378, 51546781, 56026405, 76923406, 89880528, 96070591, 126906346, 164629585, 201854278, 228733966
Offset: 1

Views

Author

Antonio Roldán, Jan 18 2013

Keywords

Examples

			4186 is in sequence because it is triangular (4186 = 91*92/2) and the sum of its triangular divisors, 4186+91+1 = 4278 is also triangular (4278 = 92*93/2).
		

Crossrefs

Subsequence of A209309.

Programs

  • Mathematica
    triQ[n_] := n > 1 && IntegerQ[Sqrt[8*n+1]]; q[n_] := triQ[1 + DivisorSum[n, #&, triQ[#] &]]; Select[Accumulate[Range[22000]], q] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    istriangular(n)=issquare(8*n+1)
    {t=0; for(n=1, 10^8, if(istriangular(n), k=sumdiv(n, d, istriangular(d)*d) ;if(istriangular(k)&&k>>1,t+=1;write("b209310.txt",t," ",n))))}

A304876 L.g.f.: log(Product_{k>=1} (1 + x^(k*(k+1)/2))) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, -1, 4, -1, 1, 2, 1, -1, 4, 9, 1, -10, 1, -1, 19, -1, 1, 2, 1, -11, 25, -1, 1, -10, 1, -1, 4, 27, 1, -3, 1, -1, 4, -1, 1, 26, 1, -1, 4, -11, 1, -19, 1, -1, 64, -1, 1, -10, 1, 9, 4, -1, 1, 2, 56, -29, 4, -1, 1, -35, 1, -1, 25, -1, 1, 68, 1, -1, 4, 9, 1, -46, 1, -1, 19, -1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Examples

			L.g.f.: L(x) = x - x^2/2 + 4*x^3/3 - x^4/4 + x^5/5 + 2*x^6/6 + x^7/7 - x^8/8 + 4*x^9/9 + 9*x^10/10 + ...
exp(L(x)) = 1 + x + x^3 + x^4 + x^6 + x^7 + x^9 + 2*x^10 + x^11 + x^13 + x^14 + x^15 + 2*x^16 + ... + A024940(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 77; Rest[CoefficientList[Series[Log[Product[1 + x^(k (k + 1)/2), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    nmax = 77; Rest[CoefficientList[Series[Sum[k (k + 1)/2 x^(k (k + 1)/2)/(1 + x^(k (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[DivisorSum[n, (-1)^(n/# + 1) # &, IntegerQ[(8 # + 1)^(1/2)] &], {n, 77}]
  • PARI
    A010054(n) = issquare(8*n + 1);
    A304876(n) = sumdiv(n,d,(-1)^(1+(n/d)) * A010054(d)*d); \\ Antti Karttunen, Feb 20 2023

Formula

G.f.: Sum_{k>=1} (k*(k + 1)/2)*x^(k*(k+1)/2)/(1 + x^(k*(k+1)/2)).
a(n) = Sum_{d|n} (-1)^(n/d+1)*A010054(d)*d.

A327629 Expansion of Sum_{k>=1} x^(k*(k + 1)/2) / (1 - x^(k*(k + 1)/2))^2.

Original entry on oeis.org

1, 2, 4, 4, 5, 9, 7, 8, 12, 11, 11, 18, 13, 14, 21, 16, 17, 27, 19, 22, 29, 22, 23, 36, 25, 26, 36, 29, 29, 50, 31, 32, 44, 34, 35, 55, 37, 38, 52, 44, 41, 65, 43, 44, 64, 46, 47, 72, 49, 55, 68, 52, 53, 81, 56, 58, 76, 58, 59, 100, 61, 62, 87, 64, 65, 100, 67, 68, 92, 77
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 19 2019

Keywords

Comments

Sum of divisors d of n such that n/d is triangular number.

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[x^(k (k + 1)/2)/(1 - x^(k (k + 1)/2))^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, # &, IntegerQ[Sqrt[8 n/# + 1]] &]; Table[a[n], {n, 1, 70}]
  • PARI
    a(n)={sumdiv(n, d, if(ispolygonal(d,3), n/d))} \\ Andrew Howroyd, Sep 19 2019
    
  • Python
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A327629(n): return sum(n//d for d in divisors(n,generator=True) if is_square((d<<3)+1)) # Chai Wah Wu, Jun 07 2025

Formula

a(n) = Sum_{d|n} A010054(n/d) * d.

A209311 Numbers whose sum of triangular divisors is also a divisor and greater than 1.

Original entry on oeis.org

285, 1302, 1425, 1820, 2508, 3640, 3720, 4845, 4956, 5016, 5415, 7125, 7280, 9100, 9114, 9912, 11685, 12255, 12740, 14508, 15105, 16815, 17385, 18200, 19095, 19824, 20235, 20805, 22134, 22515, 23655, 23660, 24021, 24738, 25365, 25480, 27075, 27588, 27645
Offset: 1

Views

Author

Antonio Roldán, Jan 18 2013

Keywords

Examples

			285 is in the sequence because its divisors being 1, 3, 5, 15, 19, 57, 95, 285, of which 1, 3 and 15 are triangular, these add up to 19.
1302 is in sequence because the sum of triangular divisors 21 + 6 + 3 + 1 = 31 is divisor of 1302.
		

Crossrefs

Programs

  • Mathematica
    TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; fQ[n_] := Module[{tri = Total[Select[Divisors[n], TriangularQ]]}, tri > 1 && Mod[n, tri] == 0]; Select[Range[28000], fQ] (* T. D. Noe, Jan 23 2013 *)
  • PARI
    istriangular(n)=issquare(8*n+1)
    {t=0; for(n=1, 10^7, k=sumdiv(n, d, istriangular(d)*d); if(n/k==n\k&&k>>1, t+=1; write("b209311.txt",t," ",n)))}

A334987 Sum of centered triangular numbers dividing n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 1, 1, 20, 15, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 32, 5, 1, 1, 1, 5, 1, 20, 1, 15, 1, 1, 1, 5, 1, 47, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 20, 1, 1, 15, 1, 32, 1, 69, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 24, 1, 1, 1, 15, 1, 1, 1, 5, 86, 1, 1, 5, 1, 11
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(3 k (k - 1)/2 + 1) x^(3 k (k - 1)/2 + 1)/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
  • PARI
    isc(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k));
    a(n) = sumdiv(n, d, if (isc(d), d)); \\ Michel Marcus, May 19 2020

Formula

G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^(3*k*(k - 1)/2 + 1) / (1 - x^(3*k*(k - 1)/2 + 1)).
L.g.f.: log(G(x)), where G(x) is the g.f. for A280950.

A334988 Sum of tetrahedral numbers dividing n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 36, 5, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 61, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 46, 1, 5, 1, 1, 1, 5, 1, 1, 1, 35, 1, 1, 1, 89, 1, 1, 1, 5, 1, 11
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[Binomial[k + 2, 3] x^Binomial[k + 2, 3]/(1 - x^Binomial[k + 2, 3]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^Binomial[k + 2, 3]), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
  • PARI
    ist(n) = my(k=sqrtnint(6*n, 3)); k*(k+1)*(k+2)==6*n; \\ A000292
    a(n) = sumdiv(n, d, if (ist(d), d)); \\ Michel Marcus, May 19 2020

Formula

G.f.: Sum_{k>=1} binomial(k+2,3) * x^binomial(k+2,3) / (1 - x^binomial(k+2,3)).
L.g.f.: log(G(x)), where G(x) is the g.f. for A068980.
a(n) = Sum_{d|n} A023533(d) * d.

A343408 Sum of proper divisors of n that are triangular numbers.

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 10, 1, 1, 4, 1, 1, 10, 1, 11, 4, 1, 1, 10, 1, 1, 4, 1, 1, 35, 1, 1, 4, 1, 1, 10, 1, 1, 4, 11, 1, 31, 1, 1, 19, 1, 1, 10, 1, 11, 4, 1, 1, 10, 1, 29, 4, 1, 1, 35, 1, 1, 25, 1, 1, 10, 1, 1, 4, 11, 1, 46, 1, 1, 19, 1, 1, 10, 1, 11, 4, 1, 1, 59, 1, 1, 4, 1, 1, 80, 1, 1, 4, 1, 1, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(issqr(8*d+1), d, 0), d=numtheory[divisors](n) minus {n}):
    seq(a(n), n = 1..96);  # Alois P. Heinz, Apr 14 2021
  • Mathematica
    nmax = 96; CoefficientList[Series[Sum[(k (k + 1)/2) x^(k (k + 1))/(1 - x^(k (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[If[d < n && IntegerQ[Sqrt[8 d + 1]], d, 0], {d, Divisors[n]}], {n, 96}]
  • PARI
    a(n) = sumdiv(n, d, if ((dMichel Marcus, Apr 14 2021

Formula

G.f.: Sum_{k>=1} (k*(k+1)/2) * x^(k*(k+1)) / (1 - x^(k*(k+1)/2)).
a(n) = Sum_{d|n, d < n} A010054(d) * d.
Showing 1-8 of 8 results.