cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A343407 Number of proper divisors of n that are triangular numbers.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 4, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 1, 5, 1, 1, 3, 1, 1, 3, 1, 1, 2, 2, 1, 4, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 5, 1, 1, 2, 1, 1, 6, 1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(issqr(8*d+1), 1, 0), d=numtheory[divisors](n) minus {n}):
    seq(a(n), n = 1..105);  # Alois P. Heinz, Apr 14 2021
  • Mathematica
    nmax = 105; CoefficientList[Series[Sum[x^(k (k + 1))/(1 - x^(k (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[If[d < n && IntegerQ[Sqrt[8 d + 1]], 1, 0], {d, Divisors[n]}], {n, 105}]
  • PARI
    a(n) = sumdiv(n, d, if ((dMichel Marcus, Apr 14 2021

Formula

G.f.: Sum_{k>=1} x^(k*(k+1)) / (1 - x^(k*(k+1)/2)).
a(n) = Sum_{d|n, d < n} A010054(d).
Showing 1-1 of 1 results.