cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A379386 Decimal expansion of the volume of a deltoidal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

8, 1, 0, 0, 4, 1, 4, 3, 6, 3, 5, 3, 7, 7, 0, 8, 9, 0, 9, 9, 4, 5, 6, 6, 6, 5, 3, 4, 1, 6, 1, 6, 2, 8, 2, 2, 4, 6, 8, 0, 4, 3, 9, 3, 4, 5, 6, 8, 0, 3, 4, 5, 0, 0, 6, 2, 5, 4, 2, 8, 6, 0, 3, 6, 7, 4, 5, 7, 7, 4, 5, 7, 5, 9, 4, 9, 7, 9, 0, 1, 9, 0, 9, 9, 9, 5, 1, 5, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Dec 23 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			81.004143635377089099456665341616282246804393456803...
		

Crossrefs

Cf. A379385 (surface area), A379387 (inradius), A379388 (midradius), A379389 (dihedral angle).
Cf. A185093 (volume of a (small) rhombicosidodecahedron with unit edge length).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[(29530 + 13204*Sqrt[5])/9], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalHexecontahedron","Volume"], 10, 100]]

Formula

Equals sqrt((29530 + 13204*sqrt(5))/9) = sqrt((29530 + 13204*A002163)/9).

A344149 Decimal expansion of 30+5*sqrt(3)+3*sqrt(25+10*sqrt(5)).

Original entry on oeis.org

5, 9, 3, 0, 5, 9, 8, 2, 8, 4, 4, 9, 1, 1, 9, 8, 9, 5, 4, 0, 7, 4, 5, 3, 7, 5, 4, 3, 6, 1, 9, 2, 6, 7, 7, 0, 2, 7, 6, 0, 2, 5, 1, 6, 3, 0, 9, 1, 7, 4, 2, 8, 3, 0, 9, 0, 7, 6, 4, 1, 7, 1, 3, 8, 1, 5, 4, 6, 0, 9, 2, 9, 9, 1, 0, 5, 1, 5, 9, 4, 9, 6, 1, 3, 9, 5, 0, 2, 5, 8, 3, 0, 4, 3, 7, 2, 9, 5, 7, 6, 4
Offset: 2

Views

Author

Wesley Ivan Hurt, May 10 2021

Keywords

Comments

Decimal expansion of the surface area of a rhombicosidodecahedron with unit edge length.
Apart from the first digit the same as A179451. - R. J. Mathar, May 16 2021

Examples

			59.305982844911989540745375436192677...
		

Crossrefs

Cf. A185093 (rhombicosidodecahedron volume).

Programs

  • Magma
    SetDefaultRealField(RealField(200)); 30+5*Sqrt(3)+3*Sqrt(25+10*Sqrt(5));
  • Mathematica
    RealDigits[N[30 + 5*Sqrt[3] + 3*Sqrt[25 + 10*Sqrt[5]], 100]][[1]] (* Wesley Ivan Hurt, Nov 12 2022 *)

A386689 Decimal expansion of the volume of a diminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

3, 9, 2, 9, 1, 2, 7, 8, 4, 6, 4, 1, 6, 4, 7, 7, 3, 9, 3, 4, 3, 4, 9, 2, 2, 9, 6, 8, 5, 2, 4, 8, 1, 5, 2, 7, 8, 5, 6, 3, 2, 2, 3, 1, 9, 0, 3, 1, 7, 0, 3, 9, 8, 1, 8, 5, 1, 0, 4, 7, 4, 1, 8, 7, 5, 3, 6, 1, 3, 5, 4, 9, 9, 7, 4, 0, 6, 9, 1, 0, 7, 6, 1, 3, 9, 6, 3, 9, 6, 3
Offset: 2

Views

Author

Paolo Xausa, Jul 29 2025

Keywords

Comments

The diminished rhombicosidodecahedron is Johnson solid J_76.
Also the volume of a paragyrate diminished rhombicosidodecahedron, a metagyrate diminished rhombicosidodecahedron and a bigyrate diminished rhombicosidodecahedron (Johnson solids J_77, J_78 and J_79, respectively) with unit edges.

Examples

			39.29127846416477393434922968524815278563223190317...
		

Crossrefs

Cf. A386690 (surface area).

Programs

  • Mathematica
    First[RealDigits[115/6 + 9*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J76", "Volume"], 10, 100]]

Formula

Equals 115/6 + 9*sqrt(5) = 115/6 + 9*A002163.
Equals A185093 - A179590.
Equals the largest root of 36*x^2 - 1380*x - 1355.

A386691 Decimal expansion of the volume of a parabidiminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

3, 6, 9, 6, 7, 2, 3, 3, 1, 4, 5, 8, 3, 1, 5, 8, 0, 8, 0, 3, 4, 0, 9, 7, 8, 0, 5, 7, 2, 7, 6, 0, 6, 3, 5, 2, 9, 5, 3, 3, 8, 4, 8, 6, 3, 3, 0, 0, 9, 6, 0, 4, 7, 7, 0, 2, 2, 5, 7, 4, 7, 7, 0, 4, 5, 0, 8, 7, 6, 7, 4, 3, 8, 0, 3, 1, 5, 0, 4, 0, 8, 2, 8, 4, 5, 3, 4, 5, 3, 4
Offset: 2

Views

Author

Paolo Xausa, Jul 30 2025

Keywords

Comments

The parabidiminished rhombicosidodecahedron is Johnson solid J_80.
Also the volume of a metabidiminished rhombicosidodecahedron and a gyrate bidiminished rhombicosidodecahedron (Johnson solids J_81 and J_82, respectively) with unit edges.

Examples

			36.967233145831580803409780572760635295338486330...
		

Crossrefs

Cf. A386692 (surface area).

Programs

  • Mathematica
    First[RealDigits[5/3*(11 + 5*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J80", "Volume"], 10, 100]]

Formula

Equals (5/3)*(11 + 5*sqrt(5)) = (5/3)*(11 + 5*A002163).
Equals A185093 - 2*A179590.
Equals (50/3)*A001622 + 10 = A134946*100 + 10.
Equals the largest root of 9*x^2 - 330*x - 100.

A386693 Decimal expansion of the volume of a tridiminished rhombicosidodecahedron with unit edges.

Original entry on oeis.org

3, 4, 6, 4, 3, 1, 8, 7, 8, 2, 7, 4, 9, 8, 3, 8, 7, 6, 7, 2, 4, 7, 0, 3, 3, 1, 4, 6, 0, 2, 7, 3, 1, 1, 7, 8, 0, 5, 0, 4, 4, 7, 4, 0, 7, 5, 7, 0, 2, 1, 6, 9, 7, 2, 1, 9, 4, 1, 0, 2, 1, 2, 2, 1, 4, 8, 1, 3, 9, 9, 3, 7, 6, 3, 2, 2, 3, 1, 7, 0, 8, 9, 5, 5, 1, 0, 5, 1, 0, 4
Offset: 2

Views

Author

Paolo Xausa, Jul 31 2025

Keywords

Comments

The tridiminished rhombicosidodecahedron is Johnson solid J_83.

Examples

			34.64318782749838767247033146027311780504474075702...
		

Crossrefs

Cf. A386694 (surface area).

Programs

  • Mathematica
    First[RealDigits[35/2 + 23/3*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J83", "Volume"], 10, 100]]

Formula

Equals 35/2 + (23/3)*sqrt(5) = 35/2 + (23/3)*A002163.
Equals A185093 - 3*A179590.
Equals the largest root of 36*x^2 - 1260*x + 445.

A377795 Decimal expansion of the midradius of a (small) rhombicosidodecahedron with unit edge length.

Original entry on oeis.org

2, 1, 7, 6, 2, 5, 0, 8, 9, 9, 4, 8, 2, 8, 2, 1, 5, 1, 1, 1, 0, 0, 0, 5, 2, 8, 6, 5, 9, 9, 7, 7, 6, 7, 8, 8, 0, 1, 9, 8, 0, 7, 3, 1, 9, 1, 5, 8, 9, 3, 2, 9, 9, 4, 7, 2, 3, 0, 1, 0, 1, 7, 4, 5, 9, 2, 4, 8, 3, 3, 2, 0, 0, 9, 7, 2, 0, 7, 6, 8, 0, 9, 5, 0, 7, 6, 7, 9, 1, 8
Offset: 1

Views

Author

Paolo Xausa, Nov 08 2024

Keywords

Examples

			2.1762508994828215111000528659977678801980731915893...
		

Crossrefs

Cf. A344149 (surface area), A185093 (volume), A179592 (circumradius), A377606 (Dehn invariant, negated).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[5/2 + Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["Rhombicosidodecahedron", "Midradius"], 10, 100]]

Formula

Equals sqrt(5/2 + sqrt(5)) = sqrt(5/2 + A002163).

A381694 Decimal expansion of the isoperimetric quotient of a (small) rhombicosidodecahedron.

Original entry on oeis.org

9, 3, 8, 9, 9, 5, 2, 7, 4, 1, 1, 0, 4, 5, 0, 1, 4, 1, 3, 4, 2, 3, 7, 8, 2, 3, 6, 9, 8, 3, 0, 2, 0, 1, 2, 8, 8, 3, 6, 1, 0, 9, 1, 2, 0, 0, 7, 0, 4, 6, 1, 1, 8, 9, 1, 5, 6, 9, 6, 5, 0, 2, 5, 0, 6, 9, 8, 8, 5, 2, 2, 0, 4, 4, 0, 8, 8, 9, 8, 8, 5, 9, 2, 8, 2, 1, 9, 8, 2, 5
Offset: 0

Views

Author

Paolo Xausa, Mar 08 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.93899527411045014134237823698302012883610912007046...
		

Crossrefs

Cf. A344149 (surface area), A185093 (volume).

Programs

  • Mathematica
    First[RealDigits[4*Pi*(60 + 29*Sqrt[5])^2/(30 + Sqrt[75] + 3*Sqrt[25 + Sqrt[500]])^3, 10, 100]]

Formula

Equals 36*Pi*A185093^2/(A344149^3).
Equals 4*Pi*(60 + 29*sqrt(5))^2/((30 + 5*sqrt(3) + 3*sqrt(25 + 10*sqrt(5)))^3) = 4*A000796*(60 + 29*A002163)^2/((30 + 5*A002194 + 3*sqrt(25 + 10*A002163))^3).
Showing 1-7 of 7 results.