cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A379388 Decimal expansion of the midradius of a deltoidal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

2, 7, 0, 3, 4, 4, 4, 1, 8, 5, 3, 7, 4, 8, 6, 3, 3, 0, 2, 6, 6, 5, 9, 6, 2, 8, 8, 4, 6, 7, 5, 3, 2, 9, 5, 5, 3, 0, 3, 6, 4, 0, 1, 9, 3, 3, 7, 4, 7, 4, 9, 1, 7, 2, 0, 7, 7, 6, 0, 8, 3, 2, 0, 9, 5, 1, 6, 8, 3, 8, 6, 0, 1, 6, 6, 4, 5, 7, 3, 1, 8, 4, 6, 1, 9, 3, 6, 9, 3, 6
Offset: 1

Views

Author

Paolo Xausa, Dec 23 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			2.70344418537486330266596288467532955303640193...
		

Crossrefs

Cf. A379385 (surface area), A379386 (volume), A379387 (inradius), A379389 (dihedral angle).
Cf. A377795 (midradius of a (small) rhombicosidodecahedron with unit edge length).
Cf. A010532.

Programs

  • Mathematica
    First[RealDigits[5/4 + 13/Sqrt[80], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalHexecontahedron", "Midradius"], 10, 100]]
  • PARI
    5/4 + 13/(4*sqrt(5)) \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals 5/4 + 13/(4*sqrt(5)) = 5/4 + 13/A010532.

A379385 Decimal expansion of the surface area of a deltoidal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

9, 2, 2, 3, 1, 9, 1, 2, 9, 0, 6, 4, 0, 4, 6, 4, 0, 7, 1, 0, 4, 0, 6, 1, 6, 9, 3, 1, 9, 0, 9, 8, 3, 8, 4, 4, 0, 7, 2, 0, 7, 0, 5, 2, 5, 4, 5, 1, 8, 4, 1, 2, 3, 2, 0, 8, 3, 1, 7, 4, 5, 7, 0, 5, 9, 8, 0, 0, 6, 1, 7, 7, 3, 7, 2, 3, 1, 8, 3, 8, 0, 9, 6, 2, 4, 3, 3, 7, 0, 8
Offset: 2

Views

Author

Paolo Xausa, Dec 22 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			92.231912906404640710406169319098384407207052545184...
		

Crossrefs

Cf. A379386 (volume), A379387 (inradius), A379388 (midradius), A379389 (dihedral angle).
Cf. A344149 (surface area of a (small) rhombicosidodecahedron with unit edge length).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[4370 + 1850*Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalHexecontahedron", "SurfaceArea"], 10, 100]]

Formula

Equals sqrt(4370 + 1850*sqrt(5)) = sqrt(4370 + 1850*A002163).

A379387 Decimal expansion of the inradius of a deltoidal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

2, 6, 3, 4, 7, 9, 7, 6, 8, 8, 2, 2, 2, 4, 7, 1, 3, 6, 5, 0, 1, 3, 7, 9, 3, 3, 3, 7, 4, 7, 5, 9, 8, 0, 2, 6, 5, 5, 7, 0, 2, 7, 8, 7, 1, 5, 8, 8, 4, 4, 6, 5, 9, 1, 1, 8, 4, 4, 2, 4, 5, 0, 9, 9, 4, 1, 6, 2, 3, 4, 6, 6, 9, 6, 9, 0, 0, 8, 7, 6, 3, 3, 7, 1, 4, 5, 2, 5, 7, 7
Offset: 1

Views

Author

Paolo Xausa, Dec 23 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			2.634797688222471365013793337475980265570278715884...
		

Crossrefs

Cf. A379385 (surface area), A379386 (volume), A379388 (midradius), A379389 (dihedral angle).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Root[820*#^4 - 5710*#^2 + 121 &, 4], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalHexecontahedron", "Inradius"], 10, 100]]

Formula

Equals 11*sqrt((135 + 59*sqrt(5))/205)/(7 - sqrt(5)) = 11*sqrt((135 + 59*A002163)/205)/(7 - A002163).
Equals the largest root of 820*x^4 - 5710*x^2 + 121.

A379389 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal hexecontahedron.

Original entry on oeis.org

2, 6, 8, 9, 9, 2, 5, 2, 3, 4, 2, 0, 6, 5, 7, 6, 3, 4, 0, 0, 7, 2, 8, 8, 1, 5, 1, 4, 6, 3, 1, 6, 1, 6, 8, 3, 0, 0, 3, 5, 3, 3, 0, 3, 7, 2, 4, 9, 2, 1, 1, 4, 1, 4, 3, 1, 6, 0, 1, 1, 4, 5, 0, 7, 8, 1, 7, 2, 8, 3, 1, 9, 1, 3, 5, 1, 4, 1, 4, 4, 0, 1, 8, 9, 8, 9, 6, 6, 3, 8
Offset: 1

Views

Author

Paolo Xausa, Dec 23 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			2.6899252342065763400728815146316168300353303724921...
		

Crossrefs

Cf. A379385 (surface area), A379386 (volume), A379387 (inradius), A379388 (midradius).
Cf. A377995 and A377996 (dihedral angles of a (small) rhombicosidodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(19 + 8*Sqrt[5])/41], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DeltoidalHexecontahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-(19 + 8*sqrt(5))/41) = arccos(-(19 + 8*A002163)/41).

A380861 Decimal expansion of the smallest acute vertex angle, in radians, in a deltoidal hexecontahedron face.

Original entry on oeis.org

1, 1, 8, 3, 0, 3, 6, 7, 2, 8, 4, 2, 0, 0, 8, 3, 4, 1, 4, 7, 9, 0, 1, 3, 6, 1, 8, 6, 7, 9, 9, 8, 8, 7, 8, 6, 5, 0, 5, 4, 8, 2, 0, 6, 6, 8, 3, 6, 8, 4, 0, 6, 3, 5, 9, 7, 6, 6, 7, 9, 2, 8, 5, 3, 3, 5, 5, 6, 4, 0, 7, 3, 1, 4, 3, 9, 9, 2, 7, 5, 3, 9, 6, 4, 9, 4, 8, 8, 0, 3
Offset: 1

Views

Author

Paolo Xausa, Feb 06 2025

Keywords

Comments

A deltoidal hexecontahedron face is a kite with one smallest acute angle (this constant), two largest acute angles (A380862) and one obtuse angle (A380863).

Examples

			1.1830367284200834147901361867998878650548206683684...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[(9*Sqrt[5] - 5)/40], 10, 100]]

Formula

Equals arccos((9*sqrt(5) - 5)/40) = arccos((9*A002163 - 5)/40).
Equals 2*Pi - 2*A380862 - A380863.

A380862 Decimal expansion of the largest acute angles, in radians, in a deltoidal hexecontahedron face.

Original entry on oeis.org

1, 5, 1, 7, 9, 8, 5, 3, 7, 7, 4, 6, 0, 2, 1, 5, 4, 6, 3, 6, 0, 2, 1, 9, 1, 3, 5, 7, 3, 8, 6, 0, 7, 2, 4, 4, 8, 1, 7, 1, 2, 3, 3, 3, 8, 2, 5, 2, 7, 1, 6, 7, 2, 3, 0, 1, 0, 8, 0, 7, 6, 0, 2, 2, 4, 5, 5, 8, 8, 5, 1, 8, 3, 5, 3, 0, 5, 5, 1, 6, 4, 4, 8, 8, 2, 5, 1, 1, 8, 9
Offset: 1

Views

Author

Paolo Xausa, Feb 06 2025

Keywords

Comments

A deltoidal hexecontahedron face is a kite with one smallest acute angle (A380861), two largest acute angles (this constant) and one obtuse angle (A380863).

Examples

			1.517985377460215463602191357386072448171233382527...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[1/2 - 1/Sqrt[5]], 10, 100]]

Formula

Equals arccos(1/2 - 1/sqrt(5)) = arccos(1/2 - A020762).
Equals (2*Pi - A380861 - A380863)/2.

A380863 Decimal expansion of the obtuse vertex angle, in radians, in a deltoidal hexecontahedron face.

Original entry on oeis.org

2, 0, 6, 4, 1, 7, 7, 8, 2, 3, 8, 3, 9, 0, 7, 2, 1, 3, 4, 9, 3, 0, 7, 6, 7, 8, 6, 4, 9, 8, 6, 9, 7, 3, 0, 0, 6, 9, 9, 7, 0, 5, 1, 3, 6, 5, 3, 2, 7, 4, 7, 0, 8, 2, 1, 9, 6, 6, 9, 4, 4, 2, 8, 6, 3, 4, 8, 2, 2, 1, 7, 1, 4, 0, 7, 1, 3, 8, 7, 1, 6, 7, 8, 4, 1, 5, 5, 7, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Feb 07 2025

Keywords

Comments

A deltoidal hexecontahedron face is a kite with one smallest acute angle (A380861), two largest acute angles (A380862) and one obtuse angle (this constant).

Examples

			2.0641778238390721349307678649869730069970513653...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[(-5 - 2*Sqrt[5])/20], 10, 100]]

Formula

Equals arccos((-5 - 2*sqrt(5))/20) = arccos((-5 - 2*A002163)/20).
Equals 2*Pi - A380861 - 2*A380862.

A382011 Decimal expansion of the isoperimetric quotient of a deltoidal hexecontahedron.

Original entry on oeis.org

9, 4, 5, 8, 5, 2, 0, 1, 9, 3, 5, 6, 7, 2, 3, 7, 3, 5, 4, 3, 2, 9, 4, 8, 1, 5, 0, 6, 9, 3, 7, 9, 8, 9, 4, 7, 2, 0, 6, 9, 4, 8, 7, 0, 8, 9, 1, 2, 7, 9, 8, 8, 4, 8, 2, 8, 4, 9, 3, 8, 2, 2, 1, 4, 5, 0, 6, 7, 9, 3, 7, 2, 8, 4, 8, 4, 1, 0, 6, 8, 6, 3, 4, 6, 1, 6, 1, 7, 4, 3
Offset: 0

Views

Author

Paolo Xausa, Mar 20 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.94585201935672373543294815069379894720694870891...
		

Crossrefs

Cf. A379385 (surface area), A379386 (volume).

Programs

  • Mathematica
    First[RealDigits[Pi/205*Sqrt[(78119 + 34912*Sqrt[5])/41], 10, 100]]

Formula

Equals 36*Pi*A379386^2/(A379385^3).
Equals (Pi/205)*sqrt((78119 + 34912*sqrt(5))/41) = (A000796/205)*sqrt((78119 + 34912*A002163)/41).
Showing 1-8 of 8 results.