cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185139 Triangle T(n,k) = Sum_{i=1..n} 2^(i-1)*C(n+2*k-i-1, k-1), 1 <= k <= n.

Original entry on oeis.org

1, 3, 10, 7, 25, 91, 15, 56, 210, 792, 31, 119, 456, 1749, 6721, 63, 246, 957, 3718, 14443, 56134, 127, 501, 1969, 7722, 30251, 118456, 463828, 255, 1012, 4004, 15808, 62322, 245480, 966416, 3803648, 511, 2035, 8086, 32071, 127024, 502588, 1987096, 7852453, 31020445, 1023, 4082, 16263
Offset: 1

Views

Author

Keywords

Comments

The first term of the m-th row is 2^m-1.

Examples

			Triangle begins
1,
3,     10,
7,     25,    91,
15,    56,    210,  792,
31,    119,   456,  1749,  6721,
63,    246,   957,  3718,  14443,  56134,
127,   501,   1969, 7722,  30251,  118456, 463828,
255,   1012,  4004, 15808, 62322,  245480, 966416,  3803648,
511,   2035,  8086, 32071, 127024, 502588, 1987096, 7852453, 31020445,
...
		

Crossrefs

Cf. A174531.

Programs

  • Mathematica
    Table[Sum[2^(j - 1)*Binomial[n + 2*k - j - 1, k - 1], {j, 1, n}], {n,
       1, 50}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 23 2017 *)
  • PARI
    for(n=1,20, for(k=1,n, print1(sum(j=1,n, 2^(j-1)*binomial(n+2*k-j-1,k-1)), ", "))) \\ G. C. Greubel, Jun 23 2017

Formula

2*T_n(k) = T_(n-1)(k+1) + C(n+2*k-1,k).
T_n(k) = T_(n-2)(k+1) + C(n+2*k-1,k).
T_n(k) = 2*T_(n-1)(k) + C(n+2*k-2,k-1).
T_n(k+1) = 4*T_n(k) - (n/k)*C(n+2*k-1,k-1).