A185139 Triangle T(n,k) = Sum_{i=1..n} 2^(i-1)*C(n+2*k-i-1, k-1), 1 <= k <= n.
1, 3, 10, 7, 25, 91, 15, 56, 210, 792, 31, 119, 456, 1749, 6721, 63, 246, 957, 3718, 14443, 56134, 127, 501, 1969, 7722, 30251, 118456, 463828, 255, 1012, 4004, 15808, 62322, 245480, 966416, 3803648, 511, 2035, 8086, 32071, 127024, 502588, 1987096, 7852453, 31020445, 1023, 4082, 16263
Offset: 1
Examples
Triangle begins 1, 3, 10, 7, 25, 91, 15, 56, 210, 792, 31, 119, 456, 1749, 6721, 63, 246, 957, 3718, 14443, 56134, 127, 501, 1969, 7722, 30251, 118456, 463828, 255, 1012, 4004, 15808, 62322, 245480, 966416, 3803648, 511, 2035, 8086, 32071, 127024, 502588, 1987096, 7852453, 31020445, ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- V. Shevelev and P. Moses, On a sequence of polynomials with hypothetically integer coefficients arXiv:1112.5715 [math.NT], 2011.
Crossrefs
Cf. A174531.
Programs
-
Mathematica
Table[Sum[2^(j - 1)*Binomial[n + 2*k - j - 1, k - 1], {j, 1, n}], {n, 1, 50}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 23 2017 *)
-
PARI
for(n=1,20, for(k=1,n, print1(sum(j=1,n, 2^(j-1)*binomial(n+2*k-j-1,k-1)), ", "))) \\ G. C. Greubel, Jun 23 2017
Formula
2*T_n(k) = T_(n-1)(k+1) + C(n+2*k-1,k).
T_n(k) = T_(n-2)(k+1) + C(n+2*k-1,k).
T_n(k) = 2*T_(n-1)(k) + C(n+2*k-2,k-1).
T_n(k+1) = 4*T_n(k) - (n/k)*C(n+2*k-1,k-1).
Comments