cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187516 Numbers divisible by at least two of their digits, different and >1.

Original entry on oeis.org

24, 36, 48, 124, 126, 128, 132, 135, 162, 168, 175, 184, 204, 208, 216, 224, 234, 240, 244, 246, 248, 250, 264, 273, 276, 280, 284, 288, 306, 312, 315, 324, 328, 336, 342, 345, 348, 357, 360, 366, 369, 372, 375, 378, 384, 396, 408, 412, 420, 424, 426, 428, 432, 435, 448, 452, 456, 462, 468, 472, 476, 480, 488, 492, 495, 520, 524, 528, 540, 564, 584, 612, 624, 630, 636, 639, 642, 648
Offset: 1

Views

Author

Zak Seidov, Mar 10 2011

Keywords

Comments

There are 225 such integers < 2000, 1679 less than 10^4, 21389 less than 10^5, and 251613 less than 10^6.
Asymptotic density 17/35 = 0.485.... - Charles R Greathouse IV, Mar 11 2011

Crossrefs

Programs

  • Mathematica
    s={};Do[un=Select[Union[IntegerDigits[n]],#>1&];cnt=0;Do[d=un[[k]];If[Mod[n,d]==0,cnt++;If[cnt>1,AppendTo[s,n];Goto[ne]]],{k,Length@un}];Label[ne],{n,10000}];s
    dtdQ[n_]:=Total[Boole[Divisible[n,Union[Select[IntegerDigits[n], #>1&]]]]]>1; Select[Range[700],dtdQ]
  • PARI
    is(n)=my(d=Set(digits(n))); sum(i=1,#d, d[i]>1 && n%d[i]==0)>1 \\ Charles R Greathouse IV, Feb 11 2017

A187584 Least number divisible by at least n of its digits, different and > 1.

Original entry on oeis.org

2, 24, 248, 2364, 27384, 243768, 23469768, 1234759680
Offset: 1

Views

Author

Zak Seidov, Mar 11 2011

Keywords

Comments

a(1)=2=A185186(1), a(2)=24=A187516(1),
a(3)=248=A187398(1), a(4)=2364=A187238(1),
a(5)=27384=A187533(1), a(6)=243768=A187534(1),
a(7)=23469768=A187551(1), a(8)=1234759680=A187565(1).

Crossrefs

Programs

  • Mathematica
    divQ[m_, n_] := Length[(u = Union[Select[IntegerDigits[m], # > 1 &]])] >= n && Plus @@ (Boole@Divisible[m, u]) >= n; a[n_] := Module[{k = 1}, While[! divQ[k, n], k++]; k]; Array[a, 8] (* Amiram Eldar, Aug 30 2020 *)
  • Python
    def c(n): return len(set(d for d in str(n) if d>'1' and n%int(d)==0))
    def a(n):
      m = 2*10**(n-1)
      while c(m) < n: m += 1
      return m
    print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Feb 24 2021

Extensions

a(8) corrected by David A. Corneth, Aug 30 2020
Showing 1-2 of 2 results.