cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A185226 Number of disconnected 2-regular simple graphs on n vertices with girth at least 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 10, 11, 15, 16, 20, 23, 28, 31, 39, 43, 52, 59, 70, 79, 95, 106, 125, 142, 166, 187, 220, 247, 287, 325, 375, 423, 490, 551, 633, 715, 818, 921, 1055, 1186, 1352, 1522, 1729, 1943, 2208
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Comments

Number of partitions of n with each part at least 6, and at least 2 parts.

Crossrefs

Disconnected k-regular simple graphs with girth at least 6: A185216 (all k), A185206 (triangle); this sequence (k=2), A185236 (k=3), A185246 (k=4).
Disconnected 2-regular simple graphs with girth at least g: A165652 (g=3), A185224 (g=4), A185225 (g=5), this sequence (g=6), A185227 (g=7), A185228 (g=8), A185229 (g=9).

Programs

Formula

a(n) = A185326(n) - A185116(n).

A185216 Number of disconnected regular simple graphs on n vertices with girth at least 6.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 6, 9, 9, 12, 12, 17, 17, 22, 24, 31, 32, 42, 44, 60, 60, 109, 80, 529, 107, 8246, 143, 191422, 188, 4856141, 248, 127938143, 326, 3482858640, 424, 98176518751, 552
Offset: 0

Views

Author

Jason Kimberley, Jun 21 2012

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth at least 6: this sequence (all k), A185206 (triangle); A185226 (k=2), A185236 (k=3), A185246 (k=4).
Disconnected regular graphs with girth at least g: A068932 (g=3), A185214 (g=4), A185215 (g=5), this sequence (g=6), A185217 (g=7).

A185246 Number of disconnected 4-regular simple graphs on n vertices with girth at least 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 5, 0, 23, 0, 1301, 25, 495379, 13529
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

4-regular simple graphs with girth at least 4: A058348 (connected), this sequence (disconnected), A185346 (not necessarily connected).
Disconnected 4-regular simple graphs with girth at least g: A033483 (g=3), A185244 (g=4), A185245 (g=5), this sequence (g=6).
Disconnected k-regular simple graphs with girth at least 6: A185216 (all k), A185206 (triangle); A185226 (k=2), A185236 (k=3), this sequence (k=4).

Formula

a(n) = A185346(n) - A058348(n) = Euler_transformation(A058348)(n) - A058348(n).

A185035 Number of disconnected 3-regular simple graphs on 2n vertices with girth exactly 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 12, 67, 597, 7134, 107820, 1876672, 35924730, 741405102, 16356067055, 383931363314
Offset: 0

Views

Author

Jason Kimberley, Feb 29 2012

Keywords

Crossrefs

Disconnected 3-regular simple graphs with girth exactly g: A185033 (g=3), A185034 (g=4), this sequence (g=5), A185036 (g=6), A185037 (g=7).

Formula

a(n) = A185235(n) - A185236(n).

A185036 Number of disconnected 3-regular simple graphs on 2n vertices with girth exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 37, 432, 8119, 191254, 4855919, 127937854, 3482858263, 98176518258
Offset: 0

Views

Author

Jason Kimberley, Feb 29 2012

Keywords

Crossrefs

Disconnected 3-regular simple graphs with girth exactly g: A185033 (g=3), A185034 (g=4), A185035 (g=5), this sequence (g=6), A185037 (g=7).

Formula

a(n) = A185236(n) - A185237(n).

A185206 Triangular array D(n,k) counting disconnected k-regular simple graphs on n vertices with girth at least 6.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 2, 1, 1, 3, 1, 0, 3, 1, 1, 5, 1, 0, 5, 1, 1, 7, 1, 0, 8, 1, 1, 10, 1, 0, 11, 1, 1, 15, 1, 0, 16, 1, 1, 20, 1, 0, 23, 1, 1, 28, 1, 1, 0, 31, 0, 1, 1, 39, 1, 1, 0, 43, 0, 1, 1, 52, 6, 1, 0, 59, 0, 1, 1, 70, 37, 1, 0, 79, 0
Offset: 1

Views

Author

Jason Kimberley, Nov 03 2012

Keywords

Examples

			1: 0;
2: 1;
3: 1;
4: 1, 1;
5: 1, 0;
6: 1, 1;
7: 1, 0;
8: 1, 1;
9: 1, 0;
10: 1, 1;
11: 1, 0;
12: 1, 1, 1;
13: 1, 0, 1;
14: 1, 1, 2;
15: 1, 0, 2;
16: 1, 1, 3;
17: 1, 0, 3;
18: 1, 1, 5;
19: 1, 0, 5;
20: 1, 1, 7;
21: 1, 0, 8;
22: 1, 1, 10;
23: 1, 0, 11;
24: 1, 1, 15;
25: 1, 0, 16;
26: 1, 1, 20;
27: 1, 0, 23;
28: 1, 1, 28, 1;
29: 1, 0, 31, 0;
30: 1, 1, 39, 1;
31: 1, 0, 43, 0;
32: 1, 1, 52, 6;
33: 1, 0, 59, 0;
34: 1, 1, 70, 37;
35: 1, 0, 79, 0;
36: 1, 1, 95, 432;
37: 1, 0, 106, 0;
38: 1, 1, 125, 8119;
39: 1, 0, 142, 0;
40: 1, 1, 166, 191254;
41: 1, 0, 187, 0;
42: 1, 1, 220, 4855919;
43: 1, 0, 247, 0;
44: 1, 1, 287, 127937854;
45: 1, 0, 325, 0;
46: 1, 1, 375, 3482858263;
47: 1, 0, 423, 0;
48: 1, 1, 490, 98176518259;
49: 1, 0, 551, 0;
		

Crossrefs

Disconnected k-regular simple graphs with girth at least 6: A185216 (all k), this sequence (triangle); A185226 (k=2), A185236 (k=3), A185246 (k=4).

A185336 Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7574, 181227, 4624502, 122090545, 3328929960, 93990692632, 2754222605808
Offset: 0

Views

Author

Jason Kimberley, Jan 28 2012

Keywords

Comments

The null graph on 0 vertices is vacuously 3-regular; since it is acyclic, it has infinite girth.

Crossrefs

3-regular simple graphs with girth at least 6: A014374 (connected), A185236 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 6: A185326 (k=2), this sequence (k=3).
Not necessarily connected 3-regular simple graphs with girth *at least* g: A005638 (g=3), A185334 (g=4), A185335 (g=5), this sequence (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Programs

  • Mathematica
    A014374 = Cases[Import["https://oeis.org/A014374/b014374.txt", "Table"], {, }][[All, 2]];
    etr[f_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d f[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b];
    a = etr[A014374[[# + 1]]&];
    a /@ Range[0, Length[A014374] - 1] (* Jean-François Alcover, Dec 04 2019 *)

Formula

Euler transformation of A014374.

Extensions

a(18) from A014374 from Jean-François Alcover, Dec 04 2019
Showing 1-7 of 7 results.