A185226
Number of disconnected 2-regular simple graphs on n vertices with girth at least 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 10, 11, 15, 16, 20, 23, 28, 31, 39, 43, 52, 59, 70, 79, 95, 106, 125, 142, 166, 187, 220, 247, 287, 325, 375, 423, 490, 551, 633, 715, 818, 921, 1055, 1186, 1352, 1522, 1729, 1943, 2208
Offset: 0
Disconnected k-regular simple graphs with girth at least 6:
A185216 (all k),
A185206 (triangle); this sequence (k=2),
A185236 (k=3),
A185246 (k=4).
A185216
Number of disconnected regular simple graphs on n vertices with girth at least 6.
Original entry on oeis.org
0, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 6, 9, 9, 12, 12, 17, 17, 22, 24, 31, 32, 42, 44, 60, 60, 109, 80, 529, 107, 8246, 143, 191422, 188, 4856141, 248, 127938143, 326, 3482858640, 424, 98176518751, 552
Offset: 0
Disconnected k-regular simple graphs with girth at least 6: this sequence (all k),
A185206 (triangle);
A185226 (k=2),
A185236 (k=3),
A185246 (k=4).
A185246
Number of disconnected 4-regular simple graphs on n vertices with girth at least 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 5, 0, 23, 0, 1301, 25, 495379, 13529
Offset: 0
4-regular simple graphs with girth at least 4:
A058348 (connected), this sequence (disconnected),
A185346 (not necessarily connected).
Disconnected 4-regular simple graphs with girth at least g:
A033483 (g=3),
A185244 (g=4),
A185245 (g=5), this sequence (g=6).
Disconnected k-regular simple graphs with girth at least 6:
A185216 (all k),
A185206 (triangle);
A185226 (k=2),
A185236 (k=3), this sequence (k=4).
A185035
Number of disconnected 3-regular simple graphs on 2n vertices with girth exactly 5.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 12, 67, 597, 7134, 107820, 1876672, 35924730, 741405102, 16356067055, 383931363314
Offset: 0
A185036
Number of disconnected 3-regular simple graphs on 2n vertices with girth exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 37, 432, 8119, 191254, 4855919, 127937854, 3482858263, 98176518258
Offset: 0
A185206
Triangular array D(n,k) counting disconnected k-regular simple graphs on n vertices with girth at least 6.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 2, 1, 1, 3, 1, 0, 3, 1, 1, 5, 1, 0, 5, 1, 1, 7, 1, 0, 8, 1, 1, 10, 1, 0, 11, 1, 1, 15, 1, 0, 16, 1, 1, 20, 1, 0, 23, 1, 1, 28, 1, 1, 0, 31, 0, 1, 1, 39, 1, 1, 0, 43, 0, 1, 1, 52, 6, 1, 0, 59, 0, 1, 1, 70, 37, 1, 0, 79, 0
Offset: 1
1: 0;
2: 1;
3: 1;
4: 1, 1;
5: 1, 0;
6: 1, 1;
7: 1, 0;
8: 1, 1;
9: 1, 0;
10: 1, 1;
11: 1, 0;
12: 1, 1, 1;
13: 1, 0, 1;
14: 1, 1, 2;
15: 1, 0, 2;
16: 1, 1, 3;
17: 1, 0, 3;
18: 1, 1, 5;
19: 1, 0, 5;
20: 1, 1, 7;
21: 1, 0, 8;
22: 1, 1, 10;
23: 1, 0, 11;
24: 1, 1, 15;
25: 1, 0, 16;
26: 1, 1, 20;
27: 1, 0, 23;
28: 1, 1, 28, 1;
29: 1, 0, 31, 0;
30: 1, 1, 39, 1;
31: 1, 0, 43, 0;
32: 1, 1, 52, 6;
33: 1, 0, 59, 0;
34: 1, 1, 70, 37;
35: 1, 0, 79, 0;
36: 1, 1, 95, 432;
37: 1, 0, 106, 0;
38: 1, 1, 125, 8119;
39: 1, 0, 142, 0;
40: 1, 1, 166, 191254;
41: 1, 0, 187, 0;
42: 1, 1, 220, 4855919;
43: 1, 0, 247, 0;
44: 1, 1, 287, 127937854;
45: 1, 0, 325, 0;
46: 1, 1, 375, 3482858263;
47: 1, 0, 423, 0;
48: 1, 1, 490, 98176518259;
49: 1, 0, 551, 0;
Disconnected k-regular simple graphs with girth at least 6:
A185216 (all k), this sequence (triangle);
A185226 (k=2),
A185236 (k=3),
A185246 (k=4).
A185336
Number of not necessarily connected 3-regular simple graphs on 2n vertices with girth at least 6.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7574, 181227, 4624502, 122090545, 3328929960, 93990692632, 2754222605808
Offset: 0
3-regular simple graphs with girth at least 6:
A014374 (connected),
A185236 (disconnected), this sequence (not necessarily connected).
Not necessarily connected k-regular simple graphs with girth at least 6:
A185326 (k=2), this sequence (k=3).
Not necessarily connected 3-regular simple graphs with girth *at least* g:
A005638 (g=3),
A185334 (g=4),
A185335 (g=5), this sequence (g=6).
-
A014374 = Cases[Import["https://oeis.org/A014374/b014374.txt", "Table"], {, }][[All, 2]];
etr[f_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d f[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b];
a = etr[A014374[[# + 1]]&];
a /@ Range[0, Length[A014374] - 1] (* Jean-François Alcover, Dec 04 2019 *)
Showing 1-7 of 7 results.
Comments