A185128 a(n) = larger member of n-th pair of distinct, positive, triangular numbers whose sum and difference are also triangular numbers.
21, 171, 703, 990, 3741, 4186, 6786, 8778, 30628, 38781, 77028, 188191, 203203, 219453, 318801, 359128, 416328, 678030, 763230, 928203, 1023165, 1342341, 1505980, 1983036, 2114596, 2185095, 2349028, 2795430, 3219453, 3744216, 4928230, 6049981, 7036876, 7478778
Offset: 1
Keywords
Examples
a(2) = 171, since the pair of triangular numbers 171 = 18*(18+1)/2 and 105 = 14*(14+1)/2 produce the sum 276 = 23*(23+1)/2 and the difference 66 = 11*(11+1)/2 which are both triangular numbers.
References
- Albert H. Beiler, Recreations in the Theory of Numbers, New York, Dover, (2nd ed.) 1966, p. 197, no. 8.
Links
- N. J. A. Sloane, Annotated scan of Beiler's Table 81, based on page 197 of Beiler's "Recreations in the Theory of Numbers: The Queen of Mathematics Entertains", New York, Dover, First ed., 1964.
Programs
-
Mathematica
Module[{trs=Accumulate[Range[3900]]},Union[Select[Sort/@Subsets[trs,{2}],AllTrue[{Sqrt[ 8Total[#]+ 1],Sqrt[8Abs[#[[1]]-#[[2]]]+1]},OddQ]&]]][[All,2]]//Sort (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 02 2018 *)
-
PARI
lista(nn) = {v = vector(nn, n, n*(n+1)/2); for (n=2, nn, for (k=1, n-1, if (ispolygonal(v[n]+v[k], 3) && ispolygonal(v[n]-v[k], 3), print1(v[n], ", "));););} \\ Michel Marcus, Jan 08 2015
Formula
Extensions
Edited by N. J. A. Sloane, Dec 28 2024
Comments