A185300 Numbers k such that (sum of the decimal digits of k) + (product of the decimal digits of k) is prime.
1, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 25, 27, 29, 30, 31, 32, 34, 35, 37, 43, 45, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 70, 72, 73, 75, 78, 79, 81, 85, 87, 89, 91, 92, 95, 97, 98, 101, 102, 104, 106, 110, 120, 140, 160, 200, 201, 203, 205, 209, 210, 223, 225, 230, 232
Offset: 1
Examples
236 is in the sequence because 2 + 3 + 6 + 2*3*6 = 11 + 36 = 47 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..232] | IsPrime(&+Intseq(n)+&*Intseq(n))]; // Bruno Berselli, Aug 02 2012
-
Maple
A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: A007954 := proc(n) mul(d,d=convert(n,base,10)) ; end proc: isA185300 := proc(n) isprime(A007953(n)+A007954(n)) ; end proc: for n from 1 to 300 do if isA185300(n) then printf("%a,",n) ; end if; end do: # R. J. Mathar, Feb 08 2011
-
Mathematica
Select[Range[235],PrimeQ[DigitSum[#]+Times@@IntegerDigits[#]] &] (* Stefano Spezia, Jun 30 2025 *)
-
PARI
is(n)=my(d=digits(n)); isprime(vecsum(d)+vecprod(d)) \\ Charles R Greathouse IV, Jun 06 2017