cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A216868 Nicolas's sequence whose positivity is equivalent to the Riemann hypothesis.

Original entry on oeis.org

3, 4, 13, 67, 560, 6095, 87693, 1491707, 30942952, 795721368, 22614834943, 759296069174, 28510284114397, 1148788714239052, 50932190960133487, 2532582753383324327, 139681393339880282191, 8089483267352888074399, 512986500081861276401709, 34658318003703434434962860
Offset: 1

Views

Author

Jonathan Sondow, Sep 29 2012

Keywords

Comments

a(n) = p(n)# - floor(phi(p(n)#)*log(log(p(n)#))*exp(gamma)), where p(n)# is the n-th primorial, phi is Euler's totient function, and gamma is Euler's constant.
All a(n) are > 0 if and only if the Riemann hypothesis is true. If the Riemann hypothesis is false, then infinitely many a(n) are > 0 and infinitely many a(n) are <= 0. Nicolas (1983) proved this with a(n) replaced by p(n)#/phi(p(n)#)-log(log(p(n)#))*exp(gamma). Nicolas's refinement of this result is in A233825.
See A185339 for additional links, references, and formulas.
Named after the French mathematician Jean-Louis Nicolas. - Amiram Eldar, Jun 23 2021

Examples

			prime(2)# = 2*3 = 6 and phi(6) = 2, so a(2) = 6 - floor(2*log(log(6))*e^gamma) = 6 - floor(2*0.58319...*1.78107...) = 6 - floor(2.07...) = 6 - 2 = 4.
		

References

  • J.-L. Nicolas, Petites valeurs de la fonction d'Euler et hypothèse de Riemann, in Seminar on Number Theory, Paris 1981-82 (Paris 1981/1982), Birkhäuser, Boston, 1983, pp. 207-218.

Crossrefs

Programs

  • Mathematica
    primorial[n_] := Product[Prime[k], {k, n}]; Table[With[{p = primorial[n]}, p - Floor[EulerPhi[p]*Log[Log[p]]*Exp[EulerGamma]]], {n, 1, 20}]
  • PARI
    nicolas(n) = {p = 2; pri = 2;for (i=1, n, print1(pri - floor(eulerphi(pri)*log(log(pri))*exp(Euler)), ", ");p = nextprime(p+1);pri *= p;);} \\ Michel Marcus, Oct 06 2012
    
  • PARI
    A216868(n)={(n=prod(i=1,n,prime(i)))-floor(eulerphi(n)*log(log(n))*exp(Euler))}  \\ M. F. Hasler, Oct 06 2012

Formula

a(n) = prime(n)# - floor(phi(prime(n)#)*log(log(prime(n)#))*e^gamma).
a(n) = A002110(n) - floor(A005867(n)*log(log(A002110(n)))*e^gamma).
Limit_{n->oo} a(n)/p(n)# = 0.

A209079 Integer part of sigma(m)*phi(m)/m for colossally abundant numbers m.

Original entry on oeis.org

1, 4, 9, 44, 96, 312, 2139, 4421, 48234, 623336, 1266781, 3897787, 20138571, 341171088, 6464294306, 148397712765, 299150944780, 8665061848812, 268337399189042, 1911903969221925, 5783509506896323, 213833540687410017
Offset: 1

Views

Author

Alexei Kourbatov, Mar 04 2012

Keywords

Comments

The sequence is increasing about as fast as the sequence of colossally abundant (CA) numbers (A004490).
We have two results:
(1) sigma(m)*phi(m)/m ~ m as m tends to infinity.
Here gamma is the Euler-Mascheroni constant 0.5772156649... (A001620).
Formula (1) follows from these known facts for CA numbers m:
(A) sigma(m)/m ~ exp(gamma) * log(log(m))
(B) m/phi(m) ~ exp(gamma) * log(log(m))
Dividing (A) by (B) we get sigma(m)*phi(m)/(m^2) ~ 1, hence (1) is true.
(2) 6m/(pi^2) < sigma(m)*phi(m)/m < m, which follows from Theorem 329 (Hardy and Wright, p. 352).
Ramanujan was the first to establish (A) for CA numbers m (see equation 383 in Ramanujan's paper; note that he used a different name for CA numbers: generalized superior highly composite numbers). Once we have (A) for an increasing sequence of numbers m (including, but not limited to CA numbers m), then (B) easily follows from (A) because, for large m, sigma(m)/m < m/phi(m) < exp(gamma) log(log(m)) + 0.6/(log(log(m))) (see Robin, 1984, p. 206).

Examples

			1 = [3*1/2]
4 = [12*2/6]
9 = [28*4/12]
44 = [168*16/60]
96 = [360*32/120]
312 = [1170*96/360]
2139 = [9360*576/2520]
4421 = [19344*1152/5040]
48234 = [232128*11520/55440]
623336 = [3249792*138240/720720]
1266781 = [6604416*276480/1441440]
3897787 = [20321280*829440/4324320]
20138571 = [104993280*4147200/21621600]
341171088 = [1889879040*66355200/367567200]
6464294306 = [37797580800*1194393600/6983776800]
148397712765 = [907141939200*26276659200/160626866400]
299150944780 = [1828682956800*52553318400/321253732800]
8665061848812 = [54860488704000*1471492915200/9316358251200]
268337399189042 = [1755535638528000*44144787456000/288807105787200]
1911903969221925 = [12508191424512000*309013512192000/2021649740510400]
5783509506896323 = [37837279059148800*927040536576000/6064949221531200]
		

References

  • G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th edition, Oxford University Press (2008), 350-353.
  • G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. 63 (1984), 187-213.

Crossrefs

Cf. A004490 (colossally abundant numbers), A001620, A073751, A185339.

A216920 m such that the integer part of sigma(m)/phi(m) is not attained by any integer less than m.

Original entry on oeis.org

1, 2, 3, 6, 10, 12, 20, 30, 42, 60, 120, 210, 420, 630, 840, 2520, 9240, 10080, 27720, 55440, 120120, 360360, 720720, 2162160, 6126120, 12252240, 36756720, 116396280, 232792560, 698377680, 2677114440, 5354228880, 26771144400, 155272637520, 465817912560
Offset: 1

Views

Author

Peter Luschny, Sep 30 2012

Keywords

Comments

For large n we expect the inclusion n <= sigma(a(n))/phi(a(n)) <= n+1.

Examples

			a(22) = 360360 is in this list because sigma(360360)/phi(360360) = 22.75 and floor(sigma(k)/phi(k)) != 22 for all k < 360360.
		

Crossrefs

Cf. A185339.

Programs

  • Maple
    A216920_list := proc(searchlimit)
    local p, q, P, R; with(numtheory):
    P := {}; R := NULL; p := 1;
    while p < searchlimit do
       q := iquo(sigma(p), phi(p));
       if not member(q, P) then
          P := {q} union P; R := R,p fi;
       p := p+1 od:
    R end:
    A216920_list(1000);
  • Sage
    def A216920_list(searchlimit):
        P = {}
        for p in (1..searchlimit):
            q = sigma(p)//euler_phi(p)
            if q not in P: P[q] = p
        return sorted(P.values())
    A216920_list(1000)

Extensions

a(31)-a(33) from Donovan Johnson, Oct 02 2012
a(34)-a(35) from Donovan Johnson, Oct 03 2012
Showing 1-3 of 3 results.