A350678 Partial sums of A185381.
0, 1, 3, 6, 14, 35, 69, 158, 302, 679, 1666, 3263, 7444, 18390, 36101, 82469, 157494, 353912, 868141, 1700181, 3878490, 7403068, 16630533, 40788350, 79876519, 182210674, 450124970, 883619407, 2018522577, 3854834480, 8662361456, 21248630481, 41613641555, 94929932728, 234513795173
Offset: 0
Keywords
Links
- Martin Griffiths, The Zeckendorf Representation of a Beatty-Related Fibonacci Sum, Fibonacci Quart. 53 (2015), no. 3, 230-236.
Programs
-
Mathematica
f[n_] := Fibonacci[Floor[GoldenRatio * n]]; Accumulate @ Array[f, 35, 0] (* Amiram Eldar, Jan 11 2022 *)
-
PARI
B(n) = (n+sqrtint(5*n^2))\2; \\ A000201 f(n) = fibonacci(B(n)); \\ A185381 a(n) = sum(k=1, n, f(k));
-
Python
from math import isqrt from sympy import fibonacci def A350678(n): return sum(fibonacci((i+isqrt(5*i**2))//2) for i in range(n+1)) # Chai Wah Wu, Jan 11 2022
Formula
a(n) = Sum_{k=1..n} A185381(k).
Comments