A185390 Triangular array read by rows. T(n,k) is the number of partial functions on n labeled objects in which the domain of definition contains exactly k elements such that for all i in {1,2,3,...}, (f^i)(x) is defined.
1, 1, 1, 3, 2, 4, 16, 9, 12, 27, 125, 64, 72, 108, 256, 1296, 625, 640, 810, 1280, 3125, 16807, 7776, 7500, 8640, 11520, 18750, 46656, 262144, 117649, 108864, 118125, 143360, 196875, 326592, 823543, 4782969, 2097152, 1882384, 1959552, 2240000, 2800000, 3919104, 6588344, 16777216
Offset: 0
Examples
Triangle begins: 1; 1, 1; 3, 2, 4; 16, 9, 12, 27; 125, 64, 72, 108, 256; 1296, 625, 640, 810, 1280, 3125; 16807, 7776, 7500, 8640, 11520, 18750, 46656; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Geoffrey Critzer, Distribution of non-functional points under a random partial function
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 132, II.21.
Crossrefs
Programs
-
Julia
T(n, k) = binomial(n, k)*k^k*(n-k+1)^(n-k-1) for n in 0:9 (println([T(n, k) for k in 0:n])) end # Peter Luschny, Jan 12 2024
-
Maple
T:= (n, k)-> binomial(n,k)*k^k*(n-k+1)^(n-k-1): seq(seq(T(n,k), k=0..n), n=0..10); # Alois P. Heinz, Jan 12 2024
-
Mathematica
nn = 7; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy = Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[tx]/(1 - txy), {x, 0, nn}], {x, y}]] // Flatten
Formula
E.g.f.: exp(T(x))/(1-T(x*y)) where T(x) is the e.g.f. for A000169.
T(n,k) = binomial(n,k)*k^k*(n-k+1)^(n-k-1). - Geoffrey Critzer, Feb 28 2022
Sum_{k=0..n} k * T(n,k) = A185391(n). - Alois P. Heinz, Jan 12 2024
Comments