cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185390 Triangular array read by rows. T(n,k) is the number of partial functions on n labeled objects in which the domain of definition contains exactly k elements such that for all i in {1,2,3,...}, (f^i)(x) is defined.

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 16, 9, 12, 27, 125, 64, 72, 108, 256, 1296, 625, 640, 810, 1280, 3125, 16807, 7776, 7500, 8640, 11520, 18750, 46656, 262144, 117649, 108864, 118125, 143360, 196875, 326592, 823543, 4782969, 2097152, 1882384, 1959552, 2240000, 2800000, 3919104, 6588344, 16777216
Offset: 0

Views

Author

Geoffrey Critzer, Feb 09 2012

Keywords

Comments

Here, for any x in the domain of definition (f^i)(x) denotes the i-fold composition of f with itself, e.g., (f^2)(x) = f(f(x)). The domain of definition is the set of all values x for which f(x) is defined.
T(n,n) = n^n, the partial functions that are total functions.
T(n,0) = A000272(offset), see comment and link by Dennis P. Walsh.

Examples

			Triangle begins:
      1;
      1,     1;
      3,     2,     4;
     16,     9,    12,    27;
    125,    64,    72,   108,   256;
   1296,   625,   640,   810,  1280,  3125;
  16807,  7776,  7500,  8640, 11520, 18750, 46656;
  ...
		

Crossrefs

Row sums give A000169(n+1).
T(n,n-1) gives A055897(n).
T(n,n)-T(n,n-1) gives A060226(n).

Programs

  • Julia
    T(n, k) = binomial(n, k)*k^k*(n-k+1)^(n-k-1)
    for n in 0:9 (println([T(n, k) for k in 0:n])) end
    # Peter Luschny, Jan 12 2024
  • Maple
    T:= (n, k)-> binomial(n,k)*k^k*(n-k+1)^(n-k-1):
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Jan 12 2024
  • Mathematica
    nn = 7; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy = Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[tx]/(1 - txy), {x, 0, nn}], {x, y}]] // Flatten

Formula

E.g.f.: exp(T(x))/(1-T(x*y)) where T(x) is the e.g.f. for A000169.
T(n,k) = binomial(n,k)*k^k*(n-k+1)^(n-k-1). - Geoffrey Critzer, Feb 28 2022
Sum_{k=0..n} k * T(n,k) = A185391(n). - Alois P. Heinz, Jan 12 2024